Skip to main content
Log in

A maximum principle for the mutation-selection equilibrium of nucleotide sequences

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study the equilibriumbehaviour of a deterministic four-statemutation-selection model as a model for the evolution of a population of nucleotide sequences in sequence space. The mutation model is the Kimura 3ST mutation scheme, and the selection scheme is assumed to be invariant under permutation of sites. Considering the evolution process both forward and backward in time, we use the ancestral distribution as the stationary state of the backward process to derive an expression for the mutational loss (as the difference between ancestral and population mean fitness), and we prove a maximum principle that determines the population mean fitness in mutation-selection balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baake, E. (1995). Diploid models on sequence space. J. Biol. Syst. 3, 343–349.

    Article  Google Scholar 

  • Baake, E., M. Baake, A. Bovier and M. Klein (2003). A simplified maximum principle for models of biological evolution (in preparation).

  • Baake, E., M. Baake and H. Wagner (1997). Ising quantum chain is equivalent to a model of biological evolution. Phys. Rev. Lett. 78, 559–562; Phys. Rev. Lett. 79, 1782 (Erratum).

    Article  Google Scholar 

  • Baake, E. and H. Wagner (2001). Mutation-selection models solved exactly with methods of statistical mechanics. Genet. Res. 78, 93–117.

    Article  Google Scholar 

  • Baxter, R. J. (1982). Exactly Solved Models in Statistical Mechanics, London: Academic Press.

    MATH  Google Scholar 

  • Bürger, R. (2000). The Mathematical Theory of Selection, Recombination, and Mutation, Chichester: Wiley.

    MATH  Google Scholar 

  • Charlesworth, B. (1990). Mutation-selection balance and the evolutionary advantage of sex and recombination. Gen. Res. Cambridge 55, 199–221.

    Google Scholar 

  • Crow, J. F. and M. Kimura (1970). An Introduction to Population Genetics Theory, New York: Harper & Row.

    MATH  Google Scholar 

  • Eigen, M. (1971). Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523.

    Article  Google Scholar 

  • Eigen, M., J. McCaskill and P. Schuster (1989). The molecular quasi-species. Adv. Chem. Phys. 75, 149–263.

    Google Scholar 

  • Ewens, W. J. (1979). Mathematical Population Genetics, Berlin: Springer.

    MATH  Google Scholar 

  • Ewens, W. J. and G. R. Grant (2001). Statistical Methods in Bioinformatics, New York: Springer.

    MATH  Google Scholar 

  • Fisher, R. A. (1922). On the dominance ratio. Proc. R. Soc. Edinburgh 42, 321–341.

    Google Scholar 

  • Gerland, U. and T. Hwa (2002). On the selection and evolution of regulatory DNA motifs. J. Mol. Evol. 55, 386–400.

    Article  Google Scholar 

  • Haldane, J. B. S. (1928). A mathematical theory of natural and artificial selection. part v: selection and mutation. Proc. Cam. Phil. Soc. 23, 838–844.

    Article  Google Scholar 

  • Hamming, R. W. (1950). Error detecting and error correcting codes. Bell Syst. Tech. J. 26, 147–160.

    MathSciNet  Google Scholar 

  • Hartl, D. L. and A. G. Clark (1997). Principles of Population Genetics, 3rd edn., Sunderland: Sinauer.

    Google Scholar 

  • Hermisson, J., O. Redner, H. Wagner and E. Baake (2002). Mutation selection balance: ancestry, load, and maximum principle. Theor. Popul. Biol. 62, 9–46.

    Article  MATH  Google Scholar 

  • Hermisson, J., H. Wagner and M. Baake (2001). Four-state quantum chain as a model of sequence evolution. J. Stat. Phys. 102, 315–343.

    Article  MathSciNet  MATH  Google Scholar 

  • Jukes, T. H. and C. R. Cantor (1969). Evolution of protein molecules, in Mammalian Protein Metabolism, H. N. Munro (Ed.), New York: Academic Press, pp. 21–132.

    Google Scholar 

  • Kimura, M. (1969). The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61, 893–903.

    Google Scholar 

  • Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  Google Scholar 

  • Kimura, M. (1981). Estimation of evolutionary distances between homologous nucleotide sequences. Proc. Natl. Acad. Sci. USA 78, 454–458.

    Article  MATH  Google Scholar 

  • Kohmoto, M., M. den Nijs and L. P. Kadanoff (1981). Hamiltonian studies of the d = 2 Ashkin-Teller model. Phys. Rev. B 24, 5229–5241.

    Article  Google Scholar 

  • Leuthäusser, I. (1986). An exact correspondence between Eigen’s evolution model and a two-dimensional Ising system. J. Chem. Phys. 84, 1884–1885.

    Article  MathSciNet  Google Scholar 

  • Leuthäusser, I. (1987). Statistical mechanics of Eigen’s evolution model. J. Stat. Phys. 48, 343–360.

    Article  Google Scholar 

  • Li, W. H. and D. Graur (1990). Fundamentals of Molecular Evolution, Sunderland: Sinauer.

    Google Scholar 

  • O’Brien, P. (1985). A genetic model with mutation and selection. Math. Biosci. 73, 239–251.

    Article  MathSciNet  MATH  Google Scholar 

  • Ohta, T. and M. Kimura (1973). A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Gen. Res. 22, 201–204.

    Article  MathSciNet  Google Scholar 

  • Rumschitzky, D. S. (1987). Spectral properties of Eigen’s evolutionmatrices. J. Math. Biol. 24, 667–680.

    MathSciNet  Google Scholar 

  • Swofford, D. L., G. J. Olsen, P. J. Waddell and D. M. Hillis (1996). Phylogenetic inference, in Molecular Systematics, D. M. Hillis, C. Moritz and B. K. Mable (Eds), Sunderland: Sinauer, pp. 407–514.

    Google Scholar 

  • Tarazona, P. (1992). Error thresholds for molecular quasispecies as phase transitions: from simple landscapes to spin-glass models. Phys. Rev. A 45, 6038–6050.

    Article  Google Scholar 

  • van Lint, J. H. (1982). Introduction to Coding Theory, Berlin: Springer.

    MATH  Google Scholar 

  • von Hippel, P. H. and O. G. Berg (1986). On the specificity of DNA-protein interactions. Proc. Natl. Acad. Sci. USA 83, 1608–1612.

    Article  Google Scholar 

  • Wiehe, T. (1997). Model dependency of error thresholds: the role of fitness functions and contrasts between finite and infinite sites models. Gene. Res. Cambridge 69, 127–136.

    Google Scholar 

  • Wright, S. (1931). Evolution in Mendelian populations. Genetics 16, 97–159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tini Garske.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garske, T., Grimm, U. A maximum principle for the mutation-selection equilibrium of nucleotide sequences. Bull. Math. Biol. 66, 397–421 (2004). https://doi.org/10.1016/j.bulm.2003.08.013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.08.013

Keywords

Navigation