Skip to main content
Log in

The dependence of quorum sensing on the depth of a growing biofilm

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In a process called quorum sensing, bacteria monitor their population density via extracellular signaling molecules and modulate gene expression accordingly. In this paper, a one-dimensional model of a growing Pseudomonas aeruginosa biofilm is examined. Quorum sensing has been included in the model through equations describing the production, degradation, and diffusion of the signaling molecules, acyl-homoserine lactones, in the biofilm. From this model, we are able to make some important observations about quorum sensing. First, in order for quorum sensing to initiate near the substratum, in accordance with experimental observations, the model suggests that cells in oxygen-deficient regions of the biofilm must still be synthesizing the signal compound. Second, the induction of quorum sensing is related to a critical biofilm depth; once the biofilm grows to the critical depth, quorum sensing is induced. Third, the critical biofilm depth varies with the pH of the surrounding fluid. Of particular interest is the prediction of a critical pH threshold, above which quorum sensing is not possible at any depth. These results highlight the importance of careful study of the relationship among metabolic activity of the bacterium, signal synthesis, and the chemistry of the surrounding environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, B. and I. J. Davies (1974). The overall rate of substrate uptake (reaction) by microbial films. Trans. Inst. Chem. Eng. 52, 248–259.

    Google Scholar 

  • Bakke, R., W. G. Characklis, M. H. Turakhia and A. Yeh (1990). Biofilms, Chapter Modeling a Monopopulation Biofilm System: Pseudomonas aeruginosa, New York: John Wiley and Sons.

    Google Scholar 

  • Chopp, D. L., M. J. Kirisits, B. Moran and M. R. Parsek (2002). A mathematical model of quorum sensing in a growing bacterial biofilm. J. Ind. Microbiol. Biotech. 29, 339–346.

    Article  Google Scholar 

  • Costerton, J. W., Z. Lewandowski, D. E. Caldwell, D. R. Korber and H. M. Lappin-Scott (1995). Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745.

    Article  Google Scholar 

  • Costerton, J. W., P. S. Stewart and E. P. Greenberg (1999). Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.

    Article  Google Scholar 

  • Davies, D. G., M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton and E. P. Greenberg (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298.

    Article  Google Scholar 

  • De Kievit, T. R., R. Gillis, S. Marx, C. Brown and B. H. Iglewski (2001). Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl. Environ. Microbiol. 67, 1865–1873.

    Article  Google Scholar 

  • Dockery, J. D. and J. P. Keener (2001). A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull. Math. Biol. 63, 95–116.

    Article  Google Scholar 

  • Fuqua, C. and E. P. Greenberg (1995). Self perception in bacteria: quorum sensing with acylated homoserine lactones. Curr. Opin. Microbiol. 118, 269–277.

    Google Scholar 

  • Fuqua, C., M. R. Parsek and E. P. Greenberg (2001). Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35, 439–468.

    Article  Google Scholar 

  • Gambello, M. J., S. Kaye and B. H. Iglewski (1993). LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect. Immun. 61, 1180–1184.

    Google Scholar 

  • Koerber, A. J., J. R. King, J. P. Ward, P. Williams, J. M. Croft and R. E. Sockett (2002). A mathematical model of partial-thickness burn-wound infection by Pseudomonas aeruginosa: quorum sensing and the build-up to invasion. Bull. Math. Biol. 64, 239–259.

    Article  Google Scholar 

  • Lide, D. R. (ed.) (1990). CRC Handbook of Chemistry and Physics, 71st edn, Boca Raton, FL.

  • Moré, M. I., L. D. Finger, J. L. Stryker, C. Fuqua, A. Eberhard and S. C. Winans (1996). Enzymatic synthesis of a quroum-sensing autoinducer through use of defined substrates. Science 272, 1655–1658.

    Google Scholar 

  • Nilsson, P., A. Olofsson, M. Fagerlind, T. Faerström, S. Rice, S. Kjelleberg and P. Steinberg (2001). Kinetics of the AHL regulatory system in a model biofilm system: how many bacteria constitute a “quorum”? J. Mol. Biol. 309, 631–640.

    Article  Google Scholar 

  • Parsek, M. R. Jr., D. L. Val, B. L. Hanzelka, J. E. Cronan and E. P. Greenberg (1999). Acyl-homoserine lactone quorum-sensing signal generation. Proc. Natl Acad. Sci. 96, 4360–4365.

    Article  Google Scholar 

  • Pesci, E. C. and B. H. Iglewski (1997). The chain of command in Pseudomonas quorum sensing. Trends Microbiol. 5, 132–135.

    Article  Google Scholar 

  • Pesci, E. C., J. B. Milbank, J. P. Pearson, S. McKnight, A. S. Kende, E. P. Greenberg and B. H. Iglewski (1999). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. 96, 11229–11234.

    Google Scholar 

  • Pesci, E. C., J. P. Pearson, P. C. Seed and B. H. Iglewski (1997). Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 179, 3127–3132.

    Google Scholar 

  • Peterson, E. E. (1962). Chem. Eng. Sci. 17, 987.

    Article  Google Scholar 

  • Piper, K. R., S. B. von Bodman and S. K. Farrand (1993). Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362, 448–450.

    Article  Google Scholar 

  • Prigent-Combaret, C., G. Prensier, T. T. L. Thi, O. Vidal, P. Lejeune and C. Dorel (2000). Developmental pathway for biofilm formation in curli-producting Escherichia coli strains: role of falgella, curli and colanic acid. Environ. Microbiol. 2, 450–464.

    Article  Google Scholar 

  • Rittmann, B. E. (2002) Personal communication.

  • Rittmann, B. E. and P. L. McCarty (1981). Substrate flux into biofilms of any thickness. J. Environ. Eng. 107, 831–849.

    Google Scholar 

  • Rittmann, B. E. and P. McCarty (2001). Environmental Biotechnology, New York: McGraw-Hill.

    Google Scholar 

  • Sáez, P. B. and B. E. Rittmann (1992). Accurate pseudoanalytical solution for steady-state biofilms. Biotechnol. Bioeng. 39, 790–793.

    Article  Google Scholar 

  • Sauer, K., A. K. Camper, G. D. Ehrlich, J. W. Costerton and D. G. Davies (2002). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184, 1140–1154.

    Article  Google Scholar 

  • Schaefer, A. L., B. L. Hanzelka, M. R. Parsek and E. P. Greenberg (2000). Detection, purification and structural elucidation of acylhomoserine lactone inducer of Vibrio fischeri luminescence and other related molecules. Methods Enzymol. 305, 288–301.

    Article  Google Scholar 

  • Schaefer, A. L., D. L. Val, B. L. Hanzelka, J. E. Cronan, Jr. and E. P. Greenberg (1996). Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri luxI protein. Proc. Natl Acad. Sci. 93, 9505–9509.

    Article  Google Scholar 

  • Singh, P. K., A. L. Schaefer, M. R. Parsek, T. O. Moninger, M. J. Welsh and E. P. Greenberg (2000). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407, 762–764.

    Article  Google Scholar 

  • Stewart, P. and J. W. Costerton (2001). Antibiotic resistance of bacteria in biofilms. Lancet 358, 135–138.

    Article  Google Scholar 

  • Suidan, M. T., B. E. Rittmann and U. K. Traegner (1987). Criteria establishing biofilm-kinetic types. Water Res. 21, 491–498.

    Article  Google Scholar 

  • Wanner, O. and W. Gujer (1986). A multispecies biofilm model. Biotechnol. Bioeng. 28, 314–328.

    Article  Google Scholar 

  • Ward, J. P., J. R. King, A. J. Koerber, P. Williams, J. M. Croft and R. E. Sockett (2001). Mathematical modelling of quorum sensing bacteria. IMA J. Math. Appl. Med. Biol. 18, 263–292.

    MATH  Google Scholar 

  • Watnick, P. and R. Kolter (2000). Biofilm, city of microbes. J. Bacteriol. 182, 2675–2679.

    Article  Google Scholar 

  • Whiteley, M., M. G. Bangera, R. E. Bumgarner, M. R. Parsek, G. M. Teitzel, S. Lory and E. P. Greenberg (2001). Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864.

    Article  Google Scholar 

  • Williamson, K. J. and P. L. McCarty (1976). Verification studies of the biofilm model for bacterial substrate utilization. J. Water Pol. Cont. Fed. 48, 281–289.

    Google Scholar 

  • Xu, K. D., P. S. Stewart, F. Xia, C. T. Huang and G. A. McFeters (1998). Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl. Environ. Microbiol. 64, 4035–4039.

    Google Scholar 

  • Yates, E. et al. (2002). N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect. Immun. 70, 5635–5646.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Chopp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chopp, D.L., Kirisits, M.J., Moran, B. et al. The dependence of quorum sensing on the depth of a growing biofilm. Bull. Math. Biol. 65, 1053–1079 (2003). https://doi.org/10.1016/S0092-8240(03)00057-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0092-8240(03)00057-0

Keywords

Navigation