Skip to main content
Log in

Optimal viral production

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Viruses reproduce by multiplying within host cells. The reproductive fitness of a virus is proportional to the number of offspring it can produce during the lifetime of the cell it infects. If viral production rates are independent of cell death rate, then one expects natural selection will favor viruses that maximize their production rates. However, if increases in the viral production rate lead to an increase in the cell death rate, then the viral production rate that maximizes fitness may be less than the maximum. Here we pose the question of how fast should a virus replicate in order to maximize the number of progeny virions that it produces. We present a general mathematical framework for studying problems of this type, which may be adapted to many host-parasite systems, and use it to examine the optimal virus production scheduling problem from the perspective of the virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almogy, G., N. Cohen, S. Stocker and L. Stone (2002). Immune response and virus population composition: HIV as a case study. Proc. Roy. Soc. Lond. B269, 809–815.

    Google Scholar 

  • Bellman, R. (1957). Dynamic Programming, Princeton: Princeton University Press.

    Google Scholar 

  • Boisvert, J., X.-S. He, R. Cheung, E. B. Keeffe, T. Wright and H. B. Greenberg (2001). Quantitative analysis of hepatitis C virus in peripheral blood and liver: replication detected only in liver. J. Infect. Dis. 184, 827–835.

    Article  Google Scholar 

  • Bremermann, H. J. and J. Pickering (1983). A game-theoretical model of parasite virulence. J. Theor. Biol. 100, 411–426.

    Article  MathSciNet  Google Scholar 

  • Fenyö, E., L. Morfeldt-Mason, F. Chiodi, B. Lind, A. Von Gegerfelt, J. Albert and B. Åsjö (1988). Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates. J. Virol. 62, 4414–4419.

    Google Scholar 

  • Flint, S. J., L. W. Enquist, R. M. Krug, V. R. Racaniello and A. M. Skalka (2000). Principles of Virology, Washington D.C.: American Society for Microbiology.

    Google Scholar 

  • Furtado, M. R., D. S. Callaway, J. P. Phair, C. A. Macken, A. S. Perelson and S. M. Wolinsky (1999). Persistence of HIV-1 transcription in peripheral-blood mononuclear cells in patients receiving potent antiretroviral therapy. New Engl. J. Med. 340, 1614–1622.

    Article  Google Scholar 

  • Gilchrist, M.A., D. Coombs and A.S. Perelson. Optimizing Viral Fitness: A Within Host Perspective (submitted).

  • Grossman, Z. et al. (1999). Ongoing HIV dissemination during HAART. Nat. Med. 5, 1099–1104.

    Article  Google Scholar 

  • Haase, A. T. et al. (1996). Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 274, 985–989.

    Article  Google Scholar 

  • Hockett, R. D., J. M. Kilby, C. A. Derdeyn, M. S. Saag, M. Sillers, K. Squires, S. Chiz, M. A. Nowak, G. M. Shaw and R. P. Bucy (1999). Constant mean viral copy number per infected cell in tissue regardless of high, low, or undetectable plasma HIV RNA. J. Exp. Med. 189, 1545–1554.

    Article  Google Scholar 

  • Janeway, C. A., P. Travers, M. Walport and M. Shlomchik (2001). Immunobiology, 5th edn, New York: Garland.

    Google Scholar 

  • May, R. M. and R. M. Anderson (1983). Epidemiology and genetics in the coevolution of parasites and hosts. Proc. Roy. Soc. Lond. B219, 281–313.

    Article  Google Scholar 

  • Mittler, J. E., B. Sulzer, A. U. Neumann and A. S. Perelson (1998). Influence of delayed virus production on viral dynamics in HIV-1 infected patients. Math. Biosci. 152, 143–163.

    Article  MATH  Google Scholar 

  • Nelson, P. W., J. D. Murray and A. S. Perelson (2000). A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. 163, 201–215.

    Article  MathSciNet  MATH  Google Scholar 

  • Nelson, P. W. and A. S. Perelson (2002). Mathematical analysis of delay differential equation models of HIV-1 infection. Math. Biosci. 179, 73–94.

    Article  MathSciNet  MATH  Google Scholar 

  • Nowak, M. A. and R. M. May (2001). Virus Dynamics, Oxford: Oxford University Press.

    Google Scholar 

  • Perelson, A. S., A. U. Neumann, M. Markowitz, J. M. Leonard and D. D. Ho (1996). HIV-1 dynamics in vivo: virion clearance rate, infected cell lifespan, and viral generation time. Science 271, 1582–1586.

    Google Scholar 

  • Perelson, A. S. and P. Nelson (1999). Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Sasaki, A. and Y. Iwasa (1991). Optimal growth schedule of pathogens within a host: switching between lytic and latent cycles. Theor. Popul. Biol. 39, 201–239.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Z.-Q. et al. (1999). Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286, 1353–1357.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Coombs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coombs, D., Gilchrist, M.A., Percus, J. et al. Optimal viral production. Bull. Math. Biol. 65, 1003–1023 (2003). https://doi.org/10.1016/S0092-8240(03)00056-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0092-8240(03)00056-9

Keywords

Navigation