Skip to main content
Log in

The importance of an inter-compartmental delay in a model for human gastric acid secretion

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this work we re-examine an existing model of gastric acid secretion. The model is a 2-compartment model of the human stomach accounting for regions where relevant cells (D, G, ECL and parietal cells) and proteins and acid they secrete (somatostatin, gastrin, histamine, and gastric acid, respectively) are found. These proteins compose a positive and negative feedback system that controls the secretion of gastric acid by parietal cells. The original model consists of 18 ordinary differential equations and yields a stable 3-period limit cycle solution. We modify the existing model by introducing a delay into the system and assuming that the cell populations are in steady state over a short-time window (<300 h) and are able to reduce the system to an 8-equation delay differential equation model. In addition to demonstrating congruency between the two models, we also show that a similar stability is only reproducible when the delay in gastrin transport is approximately 30 min. This suggests that gastric acid secretion homeostasis likely depends strongly on the delay in gastrin transport from the antrum to the corpus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, R., H. Koop, H. Schwarting, K. Tuch and B. Willemer (1986). Effect of acid inhibition on gastric endocrine cells. Scand. J. Gastroenterol Suppl. 125, 14–19.

    Google Scholar 

  • Blair, A. J. d., C. T. Richardson, M. Vasko, J. H. Walsh and M. Feldman (1986). Comparison of acid secretory responsiveness to gastrin heptadecapeptide and of gastrin heptadecapeptide pharmacokinetics in duodenal ulcer patients and normal subjects. J. Clin. Invest. 78, 779–783.

    Google Scholar 

  • Busenberg, S. and B. Tang (1994). Mathematical models of the early embryonic cell cycle: the role of MPF activation and cyclin degradation. J. Math. Biol. 32, 573–596.

    Article  MathSciNet  MATH  Google Scholar 

  • Campos, R. V., A. M. Buchan, R. M. Meloche, R. A. Pederson, Y. N. Kwok and D. H. Coy (1990). Gastrin secretion from human antral G cells in culture. Gastroenterology 99, 36–44.

    Google Scholar 

  • Chen, D., C. M. Zhao, E. Lindstrom and R. Hakanson (1999a). Rat stomach ECL cells up-date of biology and physiology. Gen. Pharmacol. 32, 413–422.

    Google Scholar 

  • Chen, T., H. L. He and G. M. Church (1999b). Modeling gene expression with differential equations. Pac. Symp. Biocomput. 29–40.

  • Chew, C. S. (1983). Inhibitory action of somatostatin on isolated gastric glands and parietal cells. Am. J. Physiol. 245, G221–G229.

    Google Scholar 

  • Chew, C. S. and S. J. Hersey (1982). Gastrin stimulation of isolated gastric glands. Am. J. Physiol. 242, G504–G512.

    Google Scholar 

  • Culshaw, R. V. and S. Ruan (2000). A delay-differential equation model of HIV infection of CD4(+) T-cells. Math. Biosci. 165, 27–39.

    Article  MATH  Google Scholar 

  • D’Adda, T., A. Bertele, F. P. Pilato and C. Bordi (1989). Quantitative electron microscopy of endocrine cells in oxyntic mucosa of normal human stomach. Cell Tissue Res. 255, 41.

    Google Scholar 

  • de Beus, A. M., T. L. Fabry and H. M. Lacker (1993). A gastric acid secretion model. Biophys. J. 65, 362–378.

    Google Scholar 

  • Debas, H. T. and S. H. Carvajal (1994). Vagal regulation of acid secretion and gastrin release. Yale J. Biol. Med. 67, 145–151.

    Google Scholar 

  • De Gaetano, A. and O. Arino (2000). Mathematical modelling of the intravenous glucose tolerance test. J. Math. Biol. 40, 136–168.

    Article  MathSciNet  MATH  Google Scholar 

  • Dockray, G. J. (1999). Topical review. Gastrin and gastric epithelial physiology. J. Physiol. (Lond) 518, 315–324.

    Article  Google Scholar 

  • Engel, E. Jr., A. Peskoff, G. L. Kauffman and M. I. Grossman (1984). Analysis of hydrogen ion concentration in the gastric gel mucus layer. Am. J. Physiol. 247, G321–G338.

    Google Scholar 

  • Hakanson, R., D. Chen, E. Lindstrom, P. Norlen, M. Bjorkqvist and D. Lehto-Axtelius (1998). Physiology of the ECL cells. Yale J. Biol. Med. 71, 163–171.

    Google Scholar 

  • Hansen, C. P., F. Stadil, L. Yucun and J. F. Rehfeld (1996). Pharmacokinetics and organ metabolism of carboxyamidated and glycine-extended gastrins in pigs. Am. J. Physiol. 271, G156.

    Google Scholar 

  • Hattori, T. and N. Arizono (1988). Cell kinetics and secretion of mucus in the gastrointestinal mucosa, and their diurnal rhythm. J. Clin. Gastroenterol. 10, S1–S6.

    Google Scholar 

  • Helander, H. F., K. Rutgersson, K. G. Helander, J. P. Pisegna, J. D. Gardner, R. T. Jensen and P. N. Maton (1992). Stereologic investigations of human gastric mucosa. II. Oxyntic mucosa from patients with Zollinger-Ellison syndrome. Scand. J. Gastroenterol. 27, 875.

    Google Scholar 

  • Hersey, S. J. and G. Sachs (1995). Gastric acid secretion. Physiol. Rev. 75, 155–189.

    Google Scholar 

  • Hildebrand, P., J. W. Ensinck, J. Buettiker, J. Drewe, B. Burckhardt, K. Gyr and C. Beglinger (1994). Circulating somatostatin-28 is not a physiologic regulator of gastric acid production in man. Eur. J. Clin. Invest. 24, 50.

    Article  Google Scholar 

  • Holst, J. J., S. Knuhtsen, C. Orskov, T. Skak-Nielsen, S. S. Poulsen and O. V. Nielsen (1987). GRP-producing nerves control antral somatostatin and gastrin secretion in pigs. Am. J. Physiol. 253, G767.

    Google Scholar 

  • Inokuchi, H., S. Fujimoto and K. Kawai (1983). Cellular kinetics of gastrointestinal mucosa, with special reference to gut endocrine cells. Arch. Histol. Jpn. 46, 137–157.

    Google Scholar 

  • Joseph, I. M., Y. Zavros, J. Merchant and D. Kirschner (2002). A model for integrative study of human gastric acid secretion. J. Appl. Physiol. 8, 8.

    Google Scholar 

  • Karam, S. M. (1993). Dynamics of epithelial cells in the corpus of the mouse stomach. IV. Bidirectional migration of parietal cells ending in their gradual degeneration and loss. Anat. Rec. 236, 314–332.

    Article  Google Scholar 

  • Karam, S. M. (1995). New insights into the stem cells and the precursors of the gastric epithelium. Nutrition 11, 607–613.

    Google Scholar 

  • Karam, S. M. (1999). Lineage commitment and maturation of epithelial cells in the gut. Front. Biosci. 4, D286–D298.

    Google Scholar 

  • Karam, S. M. and C. P. Leblond (1993a). Dynamics of epithelial cells in the corpus of the mouse stomach. I. Identification of proliferative cell types and pinpointing of the stem cell. Anat. Rec. 236, 259–279.

    Article  Google Scholar 

  • Karam, S. M. and C. P. Leblond (1993b). Dynamics of epithelial cells in the corpus of the mouse stomach. II. Outward migration of pit cells. Anat. Rec. 236, 280–296.

    Article  Google Scholar 

  • Karam, S. M. and C. P. Leblond (1993c). Dynamics of epithelial cells in the corpus of the mouse stomach. III. Inward migration of neck cells followed by progressive transformation into zymogenic cells. Anat. Rec. 236, 297–313.

    Article  Google Scholar 

  • Karam, S. M. and C. P. Leblond (1993d). Dynamics of epithelial cells in the corpus of the mouse stomach. V. Behavior of entero-endocrine and caveolated cells: general conclusions on cell kinetics in the oxyntic epithelium. Anat. Rec. 236, 333–340.

    Article  Google Scholar 

  • Karam, S. and C. P. Leblond (1995). Origin and migratory pathways of the eleven epithelial cell types present in the body of the mouse stomach. Microsc. Res. Tech. 31, 193–214.

    Article  Google Scholar 

  • Karam, S. M., Q. Li and J. I. Gordon (1997). Gastric epithelial morphogenesis in normal and transgenic mice. Am. J. Physiol. 272, G1209–G1220.

    Google Scholar 

  • Keener, J. P. and J. Sneyd (1998). Mathematical Physiology, New York: Springer.

    MATH  Google Scholar 

  • Koh, T. J. and D. Chen (2000). Gastrin as a growth factor in the gastrointestinal tract [In Process Citation]. Regul. Pept. 93, 37–44.

    Article  Google Scholar 

  • Konturek, S. J. (1982). Cholinergic control of gastric acid secretion in man. Scand. J. Gastroenterol. Suppl. 72, 1–5.

    Google Scholar 

  • Koop, H., I. Behrens, E. Bothe, C. H. McIntosh, R. A. Pederson, R. Arnold and W. Creutzfeldt (1982). Adrenergic and cholinergic interactions in rat gastric somatostatin and gastrin release. Digestion 25, 96–102.

    Google Scholar 

  • Kuang, Y. (1993). Delay Differential Equations: With Applications in Population Dynamics, Cambridge, MA: Academic Press.

    MATH  Google Scholar 

  • Lambert, J. D. (1991). Numerical Methods for Ordinary Differential Systems: The Initial Value Problem, Chichester, New York: Wiley.

    MATH  Google Scholar 

  • Licko, V. and E. B. Ekblad (1992a). Dynamics of a metabolic system: what single-action agents reveal about acid secretion. Am. J. Physiol. 262, G581–G592.

    Google Scholar 

  • Licko, V. and E. B. Ekblad (1992b). What dual-action agents reveal about acid secretion: a combined experimental and modeling analysis. Biochim. Biophys. Acta 1137, 19–28.

    Article  Google Scholar 

  • Lindstrom, E., D. Chen, P. Norlen, K. Andersson and R. Hakanson (2001). Control of gastric acid secretion: the gastrin-ECL cell-parietal cell axis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 128, 505–514.

    Google Scholar 

  • Lindstrom, E. and R. Hakanson (2001). Neurohormonal regulation of secretion from isolated rat stomach ECL cells: a critical reappraisal. Regul. Pept. 97, 169–180.

    Article  Google Scholar 

  • Lundell, L., G. Lindstedt and L. Olbe (1987). Origin of gastrin liberated by gastrin releasing peptide in man. Gut 28, 1128–1133.

    Google Scholar 

  • Makhlouf, G. M. and M. L. Schubert (1990). Gastric somatostatin: a paracrine regulator of acid secretion. Metabolism 39, 138.

    Article  Google Scholar 

  • Matsuno, M., T. Matsui, A. Iwasaki and Y. Arakawa (1997). Role of acetylcholine and gastrin-releasing peptide (GRP) in gastrin secretion. J. Gastroenterol. 32, 579–586.

    Article  Google Scholar 

  • Murray, J. D. (2001). Mathematical Biology, New York: Springer.

    Google Scholar 

  • Naik, S. R., S. C. Bajaj, R. K. Goyal, D. N. Gupta and H. K. Chuttani (1971). Parietal cell mass in healthy human stomach. Gastroenterology 61, 682.

    Google Scholar 

  • Nishi, S., Y. Seino, J. Takemura, H. Ishida, M. Seno, T. Chiba, C. Yanaihara, N. Yanaihara and H. Imura (1985). Vagal regulation of GRP, gastric somatostatin, and gastrin secretion in vitro. Am. J. Physiol. 248, E425–E431.

    Google Scholar 

  • Nomiyama, S., B. Nishioka, T. Ishii, K. Nakamura and S. Majima (1981). Comparative study of G-and D-cell population in the dog stomach. Jpn. J. Surg. 11, 346.

    Google Scholar 

  • Pansu, D., A. Berard and R. Lambert (1977). Regulation of cell renewal in the gastrointestinal mucosa (author’s transl). Pathol. Biol. (Paris) 25, 119–133.

    Google Scholar 

  • Rocheville, M., D. C. Lange, U. Kumar, R. Sasi, R. C. Patel and Y. C. Patel (2000). Subtypes of the somatostatin receptor assemble as functional homo-and hetero-dimers. J. Biol. Chem. 275, 7862.

    Article  Google Scholar 

  • Royston, C. M., J. Polak, S. R. Bloom, W. M. Cooke, R. C. Russell, A. G. Pearse, J. Spencer, R. B. Welbourn and J. H. Baron (1978). G cell population of the gastric antrum, plasma gastrin, and gastric acid secretion in patients with and without duodenal ulcer. Gut 19, 689.

    Google Scholar 

  • Saffouri, B., G. C. Weir, K. N. Bitar and G. M. Makhlouf (1980). Gastrin and somatostatin secretion by perfused rat stomach: functional linkage of antral peptides. Am. J. Physiol. 238, G495–G501.

    Google Scholar 

  • Sato, F., S. Muramatsu, S. Tsuchihashi, A. Shiragai, T. Hiraoka, T. Inada, K. Kawashima, H. Matsuzawa, W. Nakamura, E. Trucco and G. A. Sacher (1972). Radiation effects on cell populations in the intestinal epithelium of mice and its theory. Cell Tissue Kinet. 5, 227–235.

    Google Scholar 

  • Schaffer, K., H. Herrmuth, J. Mueller, D. H. Coy, H. C. Wong, J. H. Walsh, M. Classen, V. Schusdziarra and W. Schepp (1997). Bombesin-like peptides stimulate somatostatin release from rat fundic D cells in primary culture. Am. J. Physiol. 273, G686.

    Google Scholar 

  • Schubert, M. L., N. F. Edwards, A. Arimura and G. M. Makhlouf (1987). Paracrine regulation of gastric acid secretion by fundic somatostatin. Am. J. Physiol. 252, G485.

    Google Scholar 

  • Schwarting, H., H. Koop, G. Gellert and R. Arnold (1986). Effect of starvation on endocrine cells in the rat stomach. Regul. Pept. 14, 33–39.

    Article  Google Scholar 

  • Simonsson, M., S. Eriksson, R. Hakanson, T. Lind, H. Lonroth, L. Lundell, D. T. O’Connor and F. Sundler (1988). Endocrine cells in the human oxyntic mucosa. A histochemical study. Scand. J. Gastroenterol. 23, 1089.

    Google Scholar 

  • Solcia, E., C. Capella, F. Sessa, G. Rindi, M. Cornaggia, C. Riva and L. Villani (1986). Gastric carcinoids and related endocrine growths. Digestion 35, 3.

    Article  Google Scholar 

  • Takahashi, T., H. Shimazu, T. Yamagishi and M. Tani (1979). G-cell population in antral mucosa of the dog. Dig. Dis. Sci. 24, 921.

    Article  Google Scholar 

  • Tam, J. (1999). Delay effect in a model for virus replication. IMA J. Math. Appl. Med. Biol. 16, 29–37.

    MATH  Google Scholar 

  • Weigert, N., Y. Y. Li, R. R. Schick, D. H. Coy, M. Classen and V. Schusdziarra (1997). Role of vagal fibers and bombesin/gastrin-releasing peptide-neurons in distention-induced gastrin release in rats. Regul. Pept. 69, 33–40.

    Article  Google Scholar 

  • Wollin, A. (1987). Regulation of gastric acid secretion at the cellular level. Clin. Invest. Med. 10, 209–214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise E. Kirschner.

Additional information

Equal contribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marino, S., Ganguli, S., Joseph, I.M.P. et al. The importance of an inter-compartmental delay in a model for human gastric acid secretion. Bull. Math. Biol. 65, 963–990 (2003). https://doi.org/10.1016/S0092-8240(03)00046-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0092-8240(03)00046-6

Keywords

Navigation