Skip to main content
Log in

Probabilistic modelling for estimating gas kinetics and decompression sickness risk in pigs during H2 biochemical decompression

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We modelled the kinetics of H2 flux during gas uptake and elimination in conscious pigs exposed to hyperbaric H2. The model used a physiological description of gas flux fitted to the observed decompression sickness (DCS) incidence in two groups of pigs: untreated controls, and animals that had received intestinal injections of H2-metabolizing microbes that biochemically eliminated some of the H2 stored in the pigs’ tissues. To analyse H2 flux during gas uptake, animals were compressed in a dry chamber to 24 atm (ca 88% H2, 9% He, 2% O2, 1% N2) for 30–1440 min and decompressed at 0.9 atm min−1 (n = 70). To analyse H2 flux during gas elimination, animals were compressed to 24 atm for 3 h and decompressed at 0.45–1.8 atm min1(n = 58). Animals were closely monitored for 1 h post-decompression for signs of DCS. Probabilistic modelling was used to estimate that the exponential time constant during H2 uptake (τ in) and H2 elimination (τ out) were 79 ± 25 min and 0.76 ± 0.14 min, respectively. Thus, the gas kinetics affecting DCS risk appeared to be substantially faster for elimination than uptake, which is contrary to customary assumptions of gas uptake and elimination kinetic symmetry. We discuss the possible reasons for this asymmetry, and why absolute values of H2 kinetics cannot be obtained with this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraini, J. H., M. C. Gardette-Chauffour, E. Martinez, J. C. Rostain and C. Lemaire (1994). Psychophysiological reactions in humans during an open sea dive to 500 m with a hydrogen-helium-oxygen mixture. J. Appl. Physiol. 76, 1113–1118.

    Google Scholar 

  • Ball, R., J. Himm, L. D. Homer and E. D. Thalmann (1995). Does the time course of bubble evolution explain decompression sickness risk? Undersea Hyperb. Med. 22, 263–280.

    Google Scholar 

  • Boycott, A. E., G. C. C. Damant and J. S. Haldane (1908). The prevention of decompression-air illness. J. Hygiene Lond. 8, 342–443.

    Google Scholar 

  • D’aoust, B. G., K. H. Smith and H. T. Swanson (1976). Decompression-induced nitrogen elimination rate in awake dogs. J. Appl. Physiol. 41, 348–355.

    Google Scholar 

  • Dromsky, D. M., C. B. Toner, S. Survanshi, A. Fahlman, E. Parker and P. Weathersby (2000). Natural history of severe decompression sickness after rapid ascent from air saturation in a porcine model. J. Appl. Physiol. 89, 791–798.

    Google Scholar 

  • Eichert, H and M. Fischer (1986). Combustion-related safety aspects of hydrogen in energy applications. Int. J. Hydrogen Energy 11, 117–124.

    Article  Google Scholar 

  • Fahlman, A. (2001). A modified Marquardt-Levenberg paramater estimation routine for Matlab. Silver Spring, MD, U.S.A.: Naval Medical Research Center, NMRC 01-02.

    Google Scholar 

  • Fahlman, A, P. Tikuisis, J. F. Himm, P. K. Weathersby and S. R. Kayar (2001). On the likelihood of decompression sickness during H2 biochemical decompression in pigs. J. Appl. Physiol. 91, 2720–2729.

    Google Scholar 

  • Farkas, A. (1935). Orthohydrogen, Parahydrogen, and Heavy Hydrogen, London: Cambridge University Press, pp. 167–191.

    Google Scholar 

  • Hills, B.A. (1978). Effect of decompression per se on nitrogen elimination. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 45, 916–921.

    Google Scholar 

  • Himm, J. F., L. D. Homer and J. A. Novotny (1994). Effect of lipid on inert gas kinetics. J. Appl. Physiol. 77, 303–312.

    Google Scholar 

  • Johnson, R. E. and F. L. Kiokemeister (1996). Calculus with Analytic Geometry, Boston: Allyn and Bacon, Inc.

    Google Scholar 

  • Kayar, S. R., E. O. Aukhert, M. J. Axley, L. D. Homer and A. L. Harabin (1997). Lower decompression sickness risk in rats by intravenous injection of foreign protein. Undersea Hyperb. Med. 24, 329–335.

    Google Scholar 

  • Kayar, S. R., M. J. Axley, L. D. Homer and A. L. Harabin (1994). Hydrogen gas is not oxidized by mammalian tissues under hyperbaric conditions. Undersea Hyperb. Med. 21, 265–275.

    Google Scholar 

  • Kayar, S. R., A. Fahlman, W. C. Lin and W. B. Whitman (2001). Increasing activity of H2-metabolizing microbes lowers decompression sickness risk in pigs during H2 dives. J. Appl. Physiol. 91, 2713–2719.

    Google Scholar 

  • Kayar, S. R., T. L. Miller, M. J. Wolin, E. O. Aukhert, M. J. Axley and L. A. Kiesow (1998). Decompression sickness risk in rats by microbial removal of dissolved gas. Am. J. Physiol. 275, R677–R682.

    Google Scholar 

  • Leffler, C. T. and J. C. White (1997). Recompression treatments during the recovery of TWA Flight 800. Undersea Hyperb. Med. 24, 301–308.

    Google Scholar 

  • Lillo, R.S. (1988). Effect of N2-He-O2 on decompression outcome in rats after variable time-at-depth dives. J. Appl. Physiol. 64, 2042–2052.

    Google Scholar 

  • Lillo, R. S., E. T. Flynn and L. D. Homer (1985). Decompression outcome following saturation dives with multiple inert gases in rats. J. Appl. Physiol. 59, 1503–1514.

    Google Scholar 

  • Lillo, R. S. and M. E. MacCallum (1991). Decompression comparison of N2 and O2 in rats. Undersea Biomed. Res. 18, 317–331.

    Google Scholar 

  • Lillo, R. S. and E. C. Parker (2000). Mixed-gas model for predicting decompression sickness in rats. J. Appl. Physiol. 89, 2107–2116.

    Google Scholar 

  • Lillo, R. S., E. C. Parker and W. R. Porter (1997). Decompression comparison of helium and hydrogen in rats. J. Appl. Physiol. 82, 892–901.

    Google Scholar 

  • Miller, T. L. (1989). Methanobrevibacter, in Bergey’s Manual of Systematic Bacteriology, J. T. Staley (Ed.), Baltimore: William & Wilkins, pp. 2178–2183.

    Google Scholar 

  • Miller, T. L. (1991). Biogenic sources of methane, in Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes, J. E. Rogers and W. B. Whitman (Eds), Washington, DC: American Society for Microbiology, pp. 175–187.

    Google Scholar 

  • Nishi, R. Y. (1993). Doppler and ultrasonic bubble detection, in The Physiology of Medicine and Diving, P. B. Bennett and D. H. Elliott (Eds), Philadelphia: W. B. Saunders Ltd., pp. 433–453.

    Google Scholar 

  • Novotny, J. A., D. L. Mayers, Y. F. Parsons, S. S. Survanshi, P. K. Weathersby and L. D. Homer (1990). Xenon kinetics in muscle are not explained by a model of parallel perfusion-limited compartments. J. Appl. Physiol. 68, 876–890.

    Google Scholar 

  • Parker, E. C., S. S. Survanshi, P. B. Massell and P. K. Weathersby (1998). Probabilistic models of the role of oxygen in human decompression sickness. J. Appl. Physiol. 84, 1096–1102.

    Google Scholar 

  • Schmidt-Nielsen, K. (1984). Scaling: Why is Animal Size so Important? New York: Cambridge University Press.

    Google Scholar 

  • Thalmann, E. D., E. C. Parker, S. S. Survanshi and P. K. Weathersby (1997). Improved probabilistic decompression model risk predictions using linear-exponential kinetics. Undersea Hyperb. Med. 24, 255–274.

    Google Scholar 

  • Tikuisis, P., P. K. Weathersby and R. Y. Nishi (1991). Maximum likelihood analysis of air and HeO2 dives. Aviat. Space. Environ. Med. 62, 425–431.

    Google Scholar 

  • Ward, C. A., D. McCullough, D. Yee, D. Stanga and W. D. Fraser (1990). Complement activation involvement in decompression sickness of rabbits. Undersea Biomed. Res. 17, 51–66.

    Google Scholar 

  • Weathersby, P. K., B. L. Hart, E. T. Flynn and W. F. Walker (1987). Role of oxygen in the production of human decompression sickness. J. Appl. Physiol. 63, 2380–2387.

    Google Scholar 

  • Weathersby, P. K., L. D. Homer and E. T. Flynn (1984). On the likelihood of decompression sickness. J. Appl. Physiol. 57, 815–825.

    Google Scholar 

  • Weathersby, P. K., S. S. Survanshi, L. D. Homer, B. L. Hart, R. Y. Nishi, E. T. Flynn and M. E. Bradley (1985). Statistically-based decompression tables I. Analysis of Standard Air Dives: 1950–1970. Bethesda, MD, U.S.A., Naval Medical Research Institute, NMRI 85-16.

    Google Scholar 

  • Weathersby, P. K., S. S. Survanshi, L. D. Homer, E. Parker and E. D. Thalmann (1992). Predicting the time of occurrence of decompression sickness. J. Appl. Physiol. 72, 1541–1548.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Fahlman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahlman, A., Kayar, S.R. Probabilistic modelling for estimating gas kinetics and decompression sickness risk in pigs during H2 biochemical decompression. Bull. Math. Biol. 65, 747–766 (2003). https://doi.org/10.1016/S0092-8240(03)00038-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0092-8240(03)00038-7

Keywords

Navigation