Skip to main content
Log in

Resonances and noise in a stochastic Hindmarsh-Rose model of thalamic neurons

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Thalamic neurons exhibit subthreshold resonance when stimulated with small sine wave signals of varying frequency and stochastic resonance when noise is added to these signals. We study a stochastic Hindmarsh-Rose model using Monte-Carlo simulations to investigate how noise, in conjunction with subthreshold resonance, leads to a preferred frequency in the firing pattern. The resulting stochastic resonance (SR) exhibits a preferred firing frequency that is approximately exponential in its dependence on the noise amplitude. In similar experiments, frequency dependent SR is found in the reliability of detection of alpha-function inputs under noise, which are more realistic inputs for neurons. A mathematical analysis of the equations reveals that the frequency preference arises from the dynamics of the slow variable. Noise can then transfer the resonance over the firing threshold because of the proximity of the fast subsystem to a Hopf bifurcation point. Our results may have implications for the behavior of thalamic neurons in a network, with noise switching the membrane potential between different resonance modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, L. (1998). Random Dynamical Systems, Berlin: Springer.

    MATH  Google Scholar 

  • Baltanas, J. P. and J. M. Casado (2002). Noise-induced resonances in the Hindmarsh-Rose neuronal model. Phys. Rev. E 65, 041915.

    Google Scholar 

  • Berdichevsky, V. and M. Gitterman (1996). Stochastic resonance in a bistable piecewise potential: analytical solution. J. Phys. A 29, L447–L452.

    Article  MathSciNet  Google Scholar 

  • Braun, H. A., H. Wissing, K. Schäfer and M. C. Hirsch (1994). Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature 367, 270–273.

    Article  Google Scholar 

  • Chapeau-Blondeau, F., X. Godivier and N. Chambet (1996). Stochastic resonance in a neuron model that transmits spike trains. Phys. Rev. E 53, 1273–1275.

    Article  Google Scholar 

  • Destexhe, A., M. Neubig, D. Ulrich and J. Huguenard (1998). Dendritic low-threshold calcium currents in thalamic relay cells. J. Neurosci. 18, 3574–3588.

    Google Scholar 

  • Douglass, J. K., L. Wilkens, E. Pantazelou and F. Moss (1993). Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365, 337–340.

    Article  Google Scholar 

  • FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466.

    Article  Google Scholar 

  • Gammaitoni, L., P. Hänggi, P. Jung and F. Marchesoni (1998). Stochastic resonance. Rev. Mod. Phys. 70, 223–287.

    Article  Google Scholar 

  • Gardiner, C. W. (1983). Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Berlin: Springer.

    MATH  Google Scholar 

  • Godivier, X. and F. Chapeau-Blondeau (1996). Noise-enhanced transmission of spike trains in the neuron. Europhys. Lett. 35, 473–477.

    Article  Google Scholar 

  • Hänggi, P., P. Jung, C. Zerbe and F. Moss (1993). Can colored noise improve stochastic resonance? J. Stat. Phys. 70, 25–47.

    Article  MATH  Google Scholar 

  • Hindmarsh, J. L. and R. M. Rose (1984). A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B Biol. Sci. 221, 87–102.

    Article  Google Scholar 

  • Hutcheon, B., R. M. Miura and E. Puil (1996). Models of subthreshold membrane resonance in neocortical neurons. J. Neurophysiol. 76, 698–714.

    Google Scholar 

  • Hutcheon, B., R. M. Miura, Y. Yarom and E. Puil (1994). Low-threshold calcium current and resonance in thalamic neurons: a model of frequency preference. J. Neurophysiol. 71, 583–594.

    Google Scholar 

  • Hutcheon, B. and Y. Yarom (2000). Resonance, oscillation, and the intrinsic frequency preferences of neurons. TINS 23, 216–222.

    Google Scholar 

  • Jansons, K. M. and G. D. Lythe (1998). Stochastic calculus application to dynamic bifurcations and threshold crossings. J. Stat. Phys. 90, 227–251.

    Article  MathSciNet  MATH  Google Scholar 

  • Jaramillo, F. and K. Wiesenfeld (1998). Mechanoelectrical transduction assisted by brownian motion: a role for noise in the auditory system. Nat. Neurosci. 1, 384–388.

    Article  Google Scholar 

  • Kloeden, P. E. and E. Platen (1992). Numerical Solution of Stochastic Differential Equations, Berlin: Springer.

    MATH  Google Scholar 

  • Lindner, B. and L. Schimansky-Geier (2000). Coherence and stochastic resonance in a two-state system. Phys. Rev. E 61, 6103–6110.

    Article  Google Scholar 

  • Longtin, A. (1993). Stochastic resonance in neuron models. J. Stat. Phys. 70, 309–327.

    Article  MATH  Google Scholar 

  • Longtin, A. (1997). Autonomous stochastic resonance in bursting neurons. Phys. Rev. E 55, 868–876.

    Article  Google Scholar 

  • Longtin, A., A. Bulsara and F. Moss (1991). Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons. Phys. Rev. Lett. 67, 656–659.

    Article  Google Scholar 

  • Longtin, A. and D. Chialvo (1998). Stochastic and deterministic resonances for excitable systems. Phys Rev. Lett. 81, 4012–4015.

    Article  Google Scholar 

  • Longtin, A. and K. Hinzer (1996). Encoding with bursting, subthreshold oscillations, and noise in mammalian cold receptors. Neural Comp. 8, 215–255.

    Google Scholar 

  • Massanes, S. and C. Vicente (1999). Nonadiabatic resonances in a noisy FitzHugh-Nagumo neuron model. Phys. Rev. E 59, 4490–4497.

    Article  Google Scholar 

  • Meunier, C. and A. D. Verga (1988). Noise and bifurcations. J. Stat. Phys. 50, 345–375.

    Article  MathSciNet  MATH  Google Scholar 

  • Morse, R. P. and E. F. Evans (1996). Enhancement of vowel coding for cochlear implants by addition of noise. Nat. Med. 2, 928–932.

    Article  Google Scholar 

  • Moss, F., D. Pierson and D. O’ Gorman (1994). Stochastic resonance: tutorial and update. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 4, 1383–1397.

    Article  MathSciNet  MATH  Google Scholar 

  • Nagao, N., H. Nishimura and N. Matsui (2000). A neural chaos model of multistable perception. Neural Processing Lett. 12, 267–276.

    Article  MATH  Google Scholar 

  • Nagumo, J. S., S. Arimoto and S. Yoshizawa (1962). An active pulse transmission line simulating nerve axon. Proc. IRE. 50, 2061–2071.

    Google Scholar 

  • Osipov, V. V. and E. V. Ponizovskaya (2000). Multivalued stochastic resonance in a model of an excitable neuron. Phys. Lett. A 271, 191–197.

    Article  MathSciNet  Google Scholar 

  • Press, W. H. (1992). Numerical Recipes in C: The Art of Scientific Computing, New York: Cambridge University Press.

    Google Scholar 

  • Puil, E., H. Meiri and Y. Yarom (1994). Resonant behavior and frequency preference of thalamic neurons. J. Neurophysiol. 71, 575–582.

    Google Scholar 

  • Robinson, J. W. C., D. E. Asraf, A. R. Bulsara and M. E. Inchiosa (1998). Information-theoretic distance measures and a generalization of stochastic resonance. Phys. Rev. Lett. 81, 2850–2853.

    Article  Google Scholar 

  • Shimokawa, T., K. Pakdaman and S. Sato (1999). Time-scale matching in the response of a leaky integrate-and-fire neuron model to periodic stimulus with additive noise. Phys. Rev. E 59, 3427–3443.

    Article  Google Scholar 

  • Stacey, W. C. and D. M. Durand (2000). Stochastic resonance improves signal detection in hippocampal CA1 neurons. J. Neurophysiol. 83, 1394–1402.

    Google Scholar 

  • Tanabe, S. and K. Pakdaman (2001a). Dynamics of moments of FitzHugh-Nagumo neuronal models and stochastic bifurcations. Phys. Rev. E 63, 031911.

    Google Scholar 

  • Tanabe, S. and K. Pakdaman (2001b). Noise-enhanced neuronal reliability. Phys. Rev. E 64, 041904.

    Google Scholar 

  • Terman, D. (1991). Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J. Appl. Math. 51, 1418–1450.

    Article  MATH  MathSciNet  Google Scholar 

  • Terman, D. (1992). The transition from bursting to continuous spiking in excitable membrane models. J. Nonlinear Sci. 2, 135–182.

    Article  MATH  MathSciNet  Google Scholar 

  • Tuckwell, H. C. (1989). Stochastic Processes in the Neurosciences, CBMS-NSF Regional Conference Series in Applied Mathematics 56, Philadelphia, PA: SIAM.

    Google Scholar 

  • Wang, W., Y. Wang and Z. D. Wang (1998). Firing and signal transduction associated with an intrinsic oscillation in neuronal systems. Phys. Rev. E 57, R2527–R2530.

    Google Scholar 

  • Wu, S., W. Ren, H. Kaifen and Z. Huang (2001). Burst and coherence resonance in Rose-Hindmarsh model induced by additive noise. Phys. Lett. A 279, 347–354.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Miura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinker, S., Puil, E. & Miura, R.M. Resonances and noise in a stochastic Hindmarsh-Rose model of thalamic neurons. Bull. Math. Biol. 65, 641–663 (2003). https://doi.org/10.1016/S0092-8240(03)00026-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0092-8240(03)00026-0

Keywords

Navigation