Skip to main content
Log in

Reaction-diffusion models of growing plant tips: Bifurcations on hemispheres

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study two chemical models for pattern formation in growing plant tips. For hemisphere radius and parameter values together optimal for spherical surface harmonic patterns of index l = 3, the Brusselator model gives an 84% probability of dichotomous branching pattern and 16% of annular pattern, while the hyperchirality model gives 88% probability of dichotomous branching and 12% of annular pattern. The models are two-morphogen reaction-diffusion systems on the surface of a hemispherical shell, with Dirichlet boundary conditions. Bifurcation analysis shows that both models give possible mechanisms for dichotomous branching of the growing tips. Symmetries of the models are used in the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carr, J. (1981). Applications of Centre Manifold Theory, New York: Springer.

    MATH  Google Scholar 

  • Chossat, P., R. Lauterbach and I. Melbourne (1990). Steady-state bifurcation with O(3)-symmetry. Arch. Ration. Mech. Anal. 113, 313–376.

    Article  MathSciNet  Google Scholar 

  • Dewel, G., P. Borckmans, A. de Wit, B. Rudowics, J.-J. Perraud, E. Dulos, J. Boissonade and P. De Kepper (1995). Pattern selection and localized structures in reaction-diffusion systems. Physica A 213, 181–198.

    Article  Google Scholar 

  • Dumais, J. and L. G. Harrison (2000). Whorl morphogenesis in the dasycladalean algae: the pattern formation viewpoint. Phil. Trans. R. Soc. Lond. B 355, 281–305.

    Article  Google Scholar 

  • Field, M., M. Golubitsky and I. Stewart (1991). Bifurcations on hemispheres. J. Nonlinear Sci. 1, 201–223.

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky, M. and D. G. Schaeffer (1985). Singularities and Groups in Bifurcation Theory, Vol. I, New York: Springer.

    MATH  Google Scholar 

  • Golubitsky, M., I. Stewart and D. G. Schaeffer (1988). Singularities and Groups in Bifurcation Theory, Vol. II, New York: Springer.

    MATH  Google Scholar 

  • Goodwin, B. C. and L. E. H. Trainor (1985). Tip and whorl morphogenesis in Acetabularia by calcium-regulated strain fields. J. Theor. Biol. 117, 79–106.

    Google Scholar 

  • Green, P. B., C. S. Steele and S. C. Rennich (1996). Phyllotactic patterns: a biophysical mechanism for their origin. Ann. Botany 77, 515–527.

    Article  Google Scholar 

  • Harrison, L. G. (1993). Kinetic Theory of Living Pattern, Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Harrison, L. G. and M. Kolár (1988). Coupling between reaction-diffusion prepattern and expressed morphogenesis, applied to desmids and dasyclads. J. Theor. Biol. 130, 493–515.

    Google Scholar 

  • Harrison, L. G. and T. C. Lacalli (1978). Hyperchirality: a mathematically convenient and biochemically possible model for the kinetics of morphogenesis. Proc. R. Soc. Lond. B 202, 361–397.

    Article  Google Scholar 

  • Harrison, L. G., S. Wehner and D. M. Holloway (2001). Complex morphogenesis of surfaces: theory and experiment on coupling of reaction-diffusion patterning to growth, in Nonlinear Chemical Kinetics: Complex Dynamics and Spatiotemporal Patterns, Faraday Discuss 120, Royal Society of Chemistry, pp. 277–294.

  • Holloway, D. M. and L. G. Harrison (1995). Order and localization in reaction-diffusion pattern. Physica A 222, 210–233.

    Article  Google Scholar 

  • Holloway, D. M. and L. G. Harrison (1999). Algal morphogenisis: modelling interspecific variation in Micrasterias with reaction-diffusion patterned catalysis of cell surface growth. Phil. Trans. R. Soc. Lond. B 354, 417–433.

    Article  Google Scholar 

  • Hunding, A. and G. D. Billing (1981). Spontaneous pattern formation in spherical nonlinear reaction-diffusion systems: selection rules favor the bipolar ‘mitosis’ pattern. J. Chem. Phys. 75, 486–488.

    Article  Google Scholar 

  • Hunding, A. and M. Brøns (1990). Bifurcation in a spherical reaction-diffusion system with imposed gradient. Physica D 44, 285–302.

    Article  MathSciNet  MATH  Google Scholar 

  • Lacalli, T. C. (1981). Dissipative structures and morphogenetic pattern in unicellular algae. Phil. Trans. R. Soc. Lond. B 294, 347–388.

    Google Scholar 

  • Lacalli, T. C. (1990). Modelling the Drosophila pair-rule pattern by reaction-diffusion gap input and pattern control in a 4-morphogen system. J. Theor. Biol. 144, 171–194.

    MathSciNet  Google Scholar 

  • Lyons, M. J. and L. G. Harrison (1991). A class of reaction-diffusion mechanisms which preferentially select striped patterns. Chem. Phys. Lett. 183, 158–164.

    Article  Google Scholar 

  • Meinhardt, G. (1982). Models of Biological Pattern Formation, London: Academic Press.

    Google Scholar 

  • Meinhardt, G. (1995). The Algorithmic Beauty of Sea Shells, New York: Springer.

    Google Scholar 

  • Nicolis, G. and I. Prigogine (1977). Self-organization in Non-equilibrium Systems, New York: Wiley.

    Google Scholar 

  • Prigogine, I. and R. Lefever (1968). Symmetry-breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695–1700.

    Article  Google Scholar 

  • Ruelle, D. (1973). Bifurcations in the presence of a symmetry group. Arch. Ration. Mech. Anal. 51, 136–152.

    Article  MATH  MathSciNet  Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72.

    Google Scholar 

  • Verdasca, J., A. de Wit, G. Dewel and P. Borckmans (1992). Reentrant hexagonal Turing structures. Phys. Lett. A 168, 194–198.

    Article  Google Scholar 

  • von Aderkas, P., (2000). The influence of exogenously applied cytokinin and abscisic acid on cotyledon number of somatic embryos of hybrid larch (Pinaceae), submitted.

  • Zimmermann, W. (1952). Main results of the telome theory. Palaeobotanist 1, 456–470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne Nagata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagata, W., Harrison, L.G. & Wehner, S. Reaction-diffusion models of growing plant tips: Bifurcations on hemispheres. Bull. Math. Biol. 65, 571–607 (2003). https://doi.org/10.1016/S0092-8240(03)00025-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0092-8240(03)00025-9

Keywords

Navigation