Skip to main content
Log in

Mean residence times in linear compartmental systems. Symbolic formulae for their direct evaluation

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A complete analysis has been performed of the mean residence times in linear compartmental systems, closed or open, with or without traps and with zero input. This analysis allows the derivation of explicit and simple general symbolic formulae to obtain the mean residence time in any compartment of any linear compartmental system, closed or open, with or without traps, as well as formulae to evaluate the mean residence time in the entire system like the above situations. The formulae are given as functions of the fractional transfer coefficients between the compartments and, in the case of open systems, they also include the excretion coefficients to the environment from the different compartments. The relationship between the formulae derived and the particular connection properties of the compartments is discussed. Finally, some examples have been solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D. H. (1983). Compartmental modeling and tracer kinetics, Berlin: Springer.

    Google Scholar 

  • Aufderheide, A. C. and L. E. Wittmers (1992). Selected aspects of the spatial distribution of lead in bone. Neurotoxins 13, 809–819.

    Google Scholar 

  • Cheng, H. (1991). A method for calculating the mean residence times of catenary matabolites. Biopharm. Drug Dispos. 12, 335–342.

    Google Scholar 

  • Cheng, H. and W. J. Jusko (1990). Mean residence times of multicompartmental drugs undergoing reversible metabolism. Pharm. Res. 7, 103–107.

    Article  Google Scholar 

  • Cremonesi, M. et al. (1999). Biokinetics and dosimetry in patients administered with In-111-DOTA-Tyr(3)-octeotride: implications for internal radiotherapy with Y-90-DOTATOC. Eur. J. Nucl. Med. 26, 877–886.

    Article  Google Scholar 

  • Cutler, D. J. (1987). Definitions of mean residence times in Pharmacokinetics. Biopharm. Drug Dispos. 8, 87–97.

    Google Scholar 

  • Gálvez, J. and R. Varón (1981). Transient phase kinetics of enzyme reactions. J. Theor. Biol. 89, 1–17.

    Article  Google Scholar 

  • García-Meseguer, M. J., J. A. Vidal de Labra, F. García-Cánovas, B. H. Havsteen, M. García-Moreno and R. Varón (2001). Time course equations of the amount of substance in a linear compartmental system and their computerised derivation. Biosystems 59, 197–220.

    Article  Google Scholar 

  • Gibaldi, M. (1991). Biopharmaceutics and Clinical Pharmacokinetics, 4th edn, London: Lea & Febiger.

    Google Scholar 

  • Green, M. H. (1992). Introduction to modeling. J. Nutr. 122, 690–694.

    Google Scholar 

  • Hearon, J. Z. (1963). Theorems on linear systems. Ann. Ny. Acad. Sci. 108, 36–38.

    MATH  MathSciNet  Google Scholar 

  • Hearon, J. Z. (1972). Residence time in compartmental system and the moments of a certain distribution. Math. Biosci. 15, 69–77.

    Article  MATH  MathSciNet  Google Scholar 

  • Isoherranen, N., E. Lavy and S. Soback (2000). Pharmacokinetics of gentamicine C-1, C-1a, and C-2 in beagles after a single intravenous dose. Antimicrob. Agents. Chemother. 44, 1443–1447.

    Article  Google Scholar 

  • Jacquez, J. A. (1985). Compartmental Analysis in Biology and Medicine, 2nd edn, Michigan: The University of Michigan Press.

    Google Scholar 

  • Kong, A. and W. Jusko (1988). Definitions and applications of mean transit and residence times in reference to the two-compartment mammillary plasma clearance model. J. Pharm. Sci. 77, 157–165.

    Google Scholar 

  • Moolvakar, S. G. and A. Luebeck (1990). Two-events models for carcinogenesis: biological, mathematical and statistical considerations. Risk Anal. 10, 323–340.

    Article  Google Scholar 

  • Rescigno, A. (1956). A contribution to the theory of tracer methods. Part II. Biochem. Biophys., Acta. 21, 111–116.

    Article  Google Scholar 

  • Rescigno, A. (1999). Compartmental analysis revisited. Pharm. Res. 36, 471–478.

    Article  Google Scholar 

  • Rescigno, A. and E. Gurpide (1973). Estimation of average times of residence, recycle and interconversion of blood-borne compounds. JCE & M. 36, 263–276.

    Google Scholar 

  • Schuster, S. and R. Heinrich (1987). Time hierarchy in enzymatic reaction chains resulting from optimality principles. J. Theor. Biol. 129, 189–209.

    MathSciNet  Google Scholar 

  • Sines, J. J. and D. Hackney (1987). A residence times analysis of enzyme kinetics. Biochem. J. 247, 159–164.

    Google Scholar 

  • Tozer, E. C. and T. E. Carew (1997). Residence time of low-density lipoprotein in the normal and atherosclerotic rabit aorta. Cos. Res. 80, 208–218.

    Google Scholar 

  • Varón, R. (1979). Estudio de sistemas de compartimientos y su aplicación a la fase de transición de reacciones enzimáticas, Doctoral Thesis, University of Murcia, Spain.

    Google Scholar 

  • Varón, R., M. J. García-Meseguer, F. García-Cánovas and B. H. Havsteen (1995). General model compartmental system with zero input I: kinetic equations. Biosystems 36, 121–133.

    Article  Google Scholar 

  • Veng-Pedersen, P. (1989). Mean time parameters in pharmacokinetics. Definition, computation and clinical implications. Part II. Clin. Pharmacokinet. 17, 424–440.

    Google Scholar 

  • Wastney, M. E., P. A. Angelus, R. M. Barnes and K. N. S. Subramanian (2000). Kinetic of zinc metabolism: variation with diet, genetics and disease. J. Nutr. 130(2 Suppl. S), 1355S–1359S.

    Google Scholar 

  • Wastney, M. E., W. A. House, R. M. Barnes and K. N. S. Subramanian (1999). Zinc absorption, distribution, excretion and retention by healthy preterm infants. Ped. Res. 45, 191–196.

    Google Scholar 

  • Wilson, P. D. G. and J. R. Dainty (1999). Modelling in nutrition: an introduction. Proc. Nutr. Soc. 58, 133–138.

    Article  Google Scholar 

  • Yamaoka, K., T. Nakagawa and T. Uno (1978). Statistical moments in pharmacokinetics. J. Pharmacokinet. Biopharm. 6, 547–557.

    Article  Google Scholar 

  • Zimmermann, T., H. Laufen, H. Yeates, F. Scharpf, K. D. Riedel and T. Schumacher (1999). The pharmacokinetics of extended-release formulations of calcium antagonists and amlodipine in subjects with differents gastrointestinal transit times. J. Clin. Pharm. 39, 1021–1031.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Varón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Meseguer, M.J., Vidal de Labra, J.A., García-Moreno, M. et al. Mean residence times in linear compartmental systems. Symbolic formulae for their direct evaluation. Bull. Math. Biol. 65, 279–308 (2003). https://doi.org/10.1016/S0092-8240(02)00096-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0092-8240(02)00096-4

Keywords

Navigation