Skip to main content
Log in

Gas-phase reactions of protonated tryptophan

  • Articles
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

The gas phase reactions of protonated tryptophan have been examined in a quadrupole ion trap using a combination of collision induced dissociation, hydrogen–deuterium exchange, regiospecific deuterium labeling and molecular orbital calculations (at the B3LYP/6-31G* level of theory). The loss of ammonia from protonated tryptophan is observed as the primary fragmentation pathway, with concomitant formation of a [M+H−NH3]+ ion by nucleophilic attack from the C3 position of the indole side chain. Hydrogen-deuterium exchange and regiospecific deuterium labeling reveals that scrambling of protons in the C2 and C4 positions of the indole ring, via intramolecular proton transfer from the thermodynamically preferred site of protonation at the amino nitrogen, precedes ammonia loss. Molecular orbital calculations have been employed to demonstrate that the activation barriers to intramolecular proton transfer are lower than that for NH3 loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piraud, M.; Vianey-Saban, C.; Petritis, K.; Elfakir, C.; Steghens, J.-P.; Morla, A.; Bouchu, D. ESI-MS/MS Analysis of Underivatised Amino Acids: A New Tool for the Diagnosis of Inherited Disorders of Amino Acid Metabolism. Fragmentation Study of 79 Molecules of Biological Interest in Positive and Negative Ionization Mode. Rapid Commun. Mass Spectrom. 2003, 17, 1297–1311.

    Article  CAS  Google Scholar 

  2. Nagy, K.; Takats, Z.; Pollreisz, F.; Szabo, T.; Vekey, K. Direct Tandem Mass Spectrometric Analysis of Amino Aacids in Dried Blood Spots Without Chemical Derivatization for Neonatal Screening. Rapid Commun. Mass Spectrom. 2003, 17, 983–990.

    Article  CAS  Google Scholar 

  3. Klagkou, K.; Pullen, F.; Harrison, M.; Organ, A.; Firth, A.; Langley, G. J. Approaches Towards the Automated Interpretation and Prediction of Electrospray Tandem Mass Spectra of Non-Peptidic Combinatorial Compounds. Rapid Commun. Mass Spectrom. 2003, 17, 1163–1168.

    Article  CAS  Google Scholar 

  4. Milne, G. W.; Axenrod, T.; Fales, H. M. Chemical Ionization Mass Spectrometry of Complex Molecules. IV. Amino acids. J. Am. Chem. Soc. 1970, 92, 5170–5175.

    Article  CAS  Google Scholar 

  5. Parker, C. D.; Hercules, D. M. Laser Mass Spectra of Simple Aliphatic and Aromatic Amino Acids. Anal. Chem. 1985, 57, 698–704.

    Article  CAS  Google Scholar 

  6. Bouchonnet, S.; Denhez, J. P.; Hoppilliard, Y.; Mauriac, C. Is Plasma Desorption Mass Spectrometry Useful for Small-Molecule Analysis? Fragmentations of the Natural α-amino acids. Anal. Chem. 1992, 64, 743–754.

    Article  CAS  Google Scholar 

  7. Dookeran, N. N.; Yalcin, T.; Harrison, A. G. Fragmentation Reactions of Protonated α-amino acids. J. Mass Spectrom. 1996, 31, 500–508.

    Article  CAS  Google Scholar 

  8. Rogalewicz, F.; Hoppilliard, Y.; Ohanessian, G. Fragmentation Mechanisms of α-Amino Acids Protonated Under Electrospray Ionization: A Collisional Activation and ab Initio Theoretical Study. Int. J. Mass Spectrom. 2000, 195/196, 565–590.

    Article  CAS  Google Scholar 

  9. Harrison, A. G.; Yalcin, T. Proton Mobility in Protonated Amino Acids and Peptides. Int. J. Mass Spectrom. Ion Processes 1997, 165/166, 339–347.

    Article  CAS  Google Scholar 

  10. O’Hair, R. A. J.; Broughton, P. S.; Styles, M. L.; Frink, B. T.; Hadad, C. M. The Fragmentation Pathways of Protonated Glycine: A Computational Study. J. Am. Soc. Mass Spectrom. 2000, 11, 687–696.

    Article  Google Scholar 

  11. Rogalewicz, F.; Hoppilliard, Y. Low Energy Fragmentation of Protonated Glycine. An ab Initio Theoretical Study. Int. J. Mass Spectrom. 2000, 199, 235–252.

    Article  CAS  Google Scholar 

  12. O’Hair, R. A. J.; Styles, M. L.; Reid, G. E. Role of the Sulfhydryl Group on the Gas Phase Fragmentation Reactions of Protonated Cysteine and Cysteine Containing Peptides. J. Am. Soc. Mass Spectrom. 1998, 9, 1275–1284.

    Article  Google Scholar 

  13. O’Hair, R. A. J.; Reid, G. E. Neighboring group versus cis-Elimination Mechanisms for Side Chain Loss from Protonated Methionine, Methionine Sulfoxide, and Their Peptides Gas Phase Ion Chemistry of Biomolecules. Eur. Mass Spectrom. 1999, 5, 325–334.

    Article  Google Scholar 

  14. Reid, G. E.; Simpson, R. J.; O’Hair, R. A. J. A Mass Spectrometric and ab Initio Study of the Pathways for Dehydration of Simple Glycine and Cysteine-Containing Peptide [M + H]+ Ions. J. Am. Soc. Mass Spectrom. 1998, 9, 945–956.

    Article  CAS  Google Scholar 

  15. O’Hair, R. A. J.; Reid, G. E. Does Side Chain Water Loss from Protonated Threonine Yield N-Protonated Dehydroamino-2-Butyric Aacid?. Rapid Commun. Mass Spectrom. 1998, 12, 999–1002.

    Article  Google Scholar 

  16. Reid, G. E.; Simpson, R. J.; O’Hair, R. A. J. Probing the Fragmentation Reactions of Protonated Glycine Oligomers via Multistage Mass Spectrometry and Gas Phase Ion Molecule Hydrogen–Deuterium Exchange. Int. J. Mass Spectrom. 1999, 190/191, 209–230.

    Article  CAS  Google Scholar 

  17. Reid, G. E.; Simpson, R. J.; O’Hair, R. A. J. Leaving Group and Gas Phase Neighboring Group Effects in the Side Chain Losses from Protonated Sserine and its Derivatives. J. Am. Soc. Mass Spectrom. 2000, 11, 1047–1060.

    Article  CAS  Google Scholar 

  18. Zwinselman, J. J.; Nibbering, N. M. M.; Van der Greef, J.; Ten Noever de Brauw, M. C. A Nitrogen-15 Labeling, Field Desorption, and Fast Atom Bombardment Study of Ammonia Loss from Protonated Arginine Molecules. Org. Mass Spectrom. 1983, 18, 525–529.

    Article  CAS  Google Scholar 

  19. Van der Greef, J.; Ten Noever de Brauw, M. C.; Zwinselman, J. J.; Nibbering, N. M. M. A Fast Atom Bombardment Study of Methionine in Combination with Deuterium Labeling. Org. Mass Spectrom. 1982, 17, 274–276.

    Article  Google Scholar 

  20. Dongre, A. R.; Jones, J. L.; Somogyi, A.; Wysocki, V. H. Influence of Peptide Composition, Gas-Phase Basicity, and Chemical Modification on Fragmentation Efficiency: Evidence for the Mobile Proton Model. J. Am. Chem. Soc. 1996, 118 (8365), 8374.

    Google Scholar 

  21. O’Hair, R. A. J. The Role of Nucleophile–Electrophile Interactions in the Unimolecular and Bimolecular Gas-Phase Ion Chemistry of Peptides and Related Systems. J. Mass Spectrom. 2000, 35, 1377–1381.

    Article  Google Scholar 

  22. Prokai, L.; Prokai-Tatrai, K.; Pop, E.; Bodor, N.; Lango, J.; Roboz, J. Fast Atom Bombardment and Tandem Mass Spectrometry of Quaternary Pyridinium Salt-Type Tryptophan Derivatives. Org. Mass Spectrom. 1993, 28, 707–715.

    Article  CAS  Google Scholar 

  23. Shoeib, T.; Cunje, A.; Hopkinson, A. C.; Siu, K. W. M. Gas-Phase Fragmentation of the Ag+-Phenylalanine Complex: Cation-p Interactions and Rradical Cation Formation. J. Am. Soc. Mass Spectrom. 2002, 13, 408–416.

    Article  CAS  Google Scholar 

  24. Johansen, J. E.; Christie, B. D.; Rapoport, H. Iminium Salts from α-Amino Acid Decarbonylation. Application to the Synthesis of Octahydroindolo[2,3-α]Quinolizines. J. Org. Chem. 1981, 46, 4914–4920.

    Article  CAS  Google Scholar 

  25. Saito, I.; Sugiyama, H.; Yamamoto, A.; Muramatsu, S.; Matsuura, T. Photochemical Hydrogen–Deuterium Exchange Reaction of Tryptophan. The Role of Nonradiative Decay of Singlet Tryptophan. J. Am. Chem. Soc. 1984, 106, 4286–4287.

    Article  CAS  Google Scholar 

  26. Saito, I.; Muramatsu, S.; Sugiyama, H.; Yamamoto, A.; Matsuura, T. Regio-Controlled Hydrogen–Deuterium Exchange of Biologically Important Indoles Under UV Irradiation. Tetrahedron Lett 1985, 26, 5891–5894.

    Article  CAS  Google Scholar 

  27. Shizuka, H.; Serizawa, M.; Shimo, T.; Saito, I.; Matsuura, T. Fluorescence-Quenching Mechanism of Tryptophan. Remarkably Efficient Internal Proton-Induced Quenching and Charge-Transfer Quenching. J. Am. Chem. Soc. 1988, 110, 1930–1934.

    Article  CAS  Google Scholar 

  28. Cozens, F.; McClelland, R. A.; Steenken, S. Flash Photolysis Observation and Lifetimes of the Cation Intermediates in the Intramolecular Photoprotonation of Tryptamine, Tryptophan, and their N-Methyl Derivatives. Tetrahedron Lett 1992, 33, 173–176.

    Article  CAS  Google Scholar 

  29. Griffiths, D. V.; Feeney, J.; Roberts, G. C. K.; Burgen, A. S. V. Preparation of Selectively Deuterated Aromatic Amino Acids for Use in Proton NMR Studies of Proteins. Biochim. Biophys. Acta 1976, 446, 479–485.

    CAS  Google Scholar 

  30. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley Interscience: New York, 1986, pp. 79–82.

    Google Scholar 

  31. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; et al. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347–1363.

    Article  CAS  Google Scholar 

  32. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.; Schmidt, M. W.; Baldridge, E. K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; DuPuis, M.; Montgomery, J. A. Gaussian 98 Rev. A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.

    Google Scholar 

  33. Schaftenaar, G.; Noordik, J. H. Molden: A Pre- and Post-Processing Program for Molecular and Electronic Structures. J. Comput. Aid. Mol. Design 2000, 14, 123–134.

    Article  CAS  Google Scholar 

  34. Scott, A. P.; Radom, L. Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Moller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem. 1996, 100, 16502–16513.

    Article  CAS  Google Scholar 

  35. Norton, R. S.; Bradbury, J. H. Kinetics of Hydrogen–Deuterium Exchange of Tryptophan and Tryptophan Peptides in Deutero-Trifluoroacetic Acid Using Proton Magnetic Resonance Spectroscopy. Mol. Cell. Biochem. 1976, 12, 103–111.

    Article  CAS  Google Scholar 

  36. Bak, B.; Dambmann, C.; Nicolaisen, F. Hydrogen–Deuterium Exchange in Tryptophan. Acta. Chem. Scand. 1967, 21, 1674–1675.

    Article  CAS  Google Scholar 

  37. Maksic, Z. B.; Kovacevic, B. Towards the Absolute Proton Affinities of 20 α-Amino Acids. Chem. Phys. Lett. 1999, 307, 497–504.

    Article  CAS  Google Scholar 

  38. Mirza, S. P.; Prabhakar, S.; Vairamani, M. Estimation of Proton Affinity of Proline and Tryptophan Under Electrospray Ionization Conditions Uusing the Extended Kinetic Method. Rapid Commun. Mass Spectrom. 2001, 15, 957–962.

    Article  CAS  Google Scholar 

  39. Gordon, H. L.; Jarrell, H. C.; Szabo, A. G.; Willis, K. J.; Somorjai, R. L. Molecular Dynamics Simulations of the Conformational Dynamics of Tryptophan. J. Phys. Chem. 1992, 96, 1915–1921.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard A. J. O’Hair or Gavin E. Reid.

Additional information

Published online November 14, 2003

This paper is Part 37 of the Series “Gas Phase Ion Chemistry of Biomolecules.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lioe, H., O’Hair, R.A.J. & Reid, G.E. Gas-phase reactions of protonated tryptophan. J Am Soc Mass Spectrom 15, 65–76 (2004). https://doi.org/10.1016/j.jasms.2003.09.011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jasms.2003.09.011

Keywords

Navigation