Skip to main content
Log in

Competition and natural selection in a mathematical model of cancer

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A malignant tumor is a dynamic amalgamation of various cell phenotypes, both cancerous (parenchyma) and healthy (stroma). These diverse cells compete over resources as well as cooperate to maintain tumor viability. Therefore, tumors are both an ecological community and an integrated tissue. An understanding of how natural selection operates in this unique ecological context should expose unappreciated vulnerabilities shared by all cancers. In this study I address natural selection’s role in tumor evolution by developing and exploring a mathematical model of a heterogenous primary neoplasm. The model is a system of nonlinear ordinary differential equations tracking the mass of up to two different parenchyma cell types, the mass of vascular endothelial cells from which new tumor blood vessels are built and the total length of tumor microvessels. Results predict the possibility of a hypertumor—a focus of aggressively reproducing parenchyma cells that invade and destroy part or all of the tumor, perhaps before it becomes a clinical entity. If this phenomenon occurs, then we should see examples of tumors that develop an aggressive histology but are paradoxically prone to extinction. Neuroblastoma, a common childhood cancer, may sometimes fit this pattern. In addition, this model suggests that parenchyma cell diversity can be maintained by a tissue-like integration of cells specialized to provide different services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertuzzi, A., M. Faretta, A. Gandolfi, C. Sinisgalli, G. Starace, G. Valoti and P. Ubezio (2002). Kinetic heterogeneity of an experimental tumour revealed by BrdUrd incorporation and mathematical modeling. Bull. Math. Biol. 64, 355–384.

    Article  Google Scholar 

  • Cahill, D. P., K. W. Kinzler, B. Vogelstein and C. Lengauer (1999). Genetic instability and Darwinian selection in tumors. Trends Cell Biol. 9, M57–M60.

    Article  Google Scholar 

  • Carmeliet, P. and R. K. Jain (2000). Angiogenesis in cancer and other diseases. Nature 407, 249–257.

    Article  Google Scholar 

  • Chang, C. and Z. Werb (2001). The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol. 11, S37–S43.

    Google Scholar 

  • Cheng, K. C. and L. A. Loeb (1997). Genomic stability and instability: a working paradigm. Curr. Top. Microbiol. Immunol. 221, 5–18.

    Google Scholar 

  • Colombo, M. P., L. Lombardi, C. Melani, M. Parenza, C. Baroni, L. Ruco and A. Stoppacciaro (1996). Hypoxic tumor cell death and modulation of endothelial adhesion molecules in the regression of granulocyte colony-stimulating factor-transduced tumors. Am. J. Pathol. 148, 473–483.

    Google Scholar 

  • Cotran, R. S., V. Kumar and T. Collins (1999). Pathologic Basis of Disease, 6th edn, Philadelphia: W.B. Saunders.

    Google Scholar 

  • Evan, G. I. and K. H. Vousden (2001). Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–347.

    Article  Google Scholar 

  • Folkman, J., P. Hahnfeldt and L. Hlatky (2000). Cancer: looking outside the genome. Nat. Rev. Mol. Cell Biol. 1, 76–79.

    Article  Google Scholar 

  • Gammack, D., H. M. Byrne and C. E. Lewis (2001). Estimating the selective advantage of mutant p53 tumour cells to repeated rounds of hypoxia. Bull. Math. Biol. 63, 135–166.

    Article  Google Scholar 

  • Ganong, W. F. (1999). Review of Medical Physiology, 19th edn, Stamford, CT: Appleton and Lange.

    Google Scholar 

  • Graber, T. G., C. Osmanian, T. Jacks, D. E. Housman, C. J. Koch, S. W. Lowe and A. J. Giaccia (1996). Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91.

    Article  Google Scholar 

  • Hannahan, D. and R. A. Weinberg (2000). The hallmarks of cancer. Cell 100, 57–70.

    Article  Google Scholar 

  • Holash, J., P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopolous and S. J. Weigand (1998). Vessel cooperation, regression and growth in tumors mediated by angiopoietins and VEGF. Science 221, 1994–1998.

    Google Scholar 

  • Horn, L., W. S. Krajewski, P. K. Paul, M. J. Song and M. J. Sydor (1988). Computerized 3-D reconstruction of small blood vessels from high voltage electron-micrographs of thick serial cross sections, in Vascular Endothelium in Health and Disease, S. Chien (Ed.), New York: Plenum Press, pp. 35–42.

    Google Scholar 

  • Jain, R. K., N. Safabakhsh, A. Sckell, Y. Chen, P. Jiang, L. Benjamin, F. Yuan and E. Keshet (1998). Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc. Natl. Acad. Sci. 95, 10820–10825.

    Google Scholar 

  • Kitanaka, C., K. Kato, I. R. Sakurada, A. Tomiyama et al. (2002). Increased Ras expression and caspase-independent neuroblasotoma cell death: possible mechanism of spontaneous regression. J. Natl. Cancer. Inst. 94, 319–321.

    Google Scholar 

  • Kraggerud, S. M., J. A. Sandvik and E. O. Pattersen (1995). Regulation of protein synthesis in human cells exposed to extreme hypoxia. Anticancer Res. 15, 683–686.

    Google Scholar 

  • Lobov, I. B., P. C. Brooks and R. A. Lang (2002). Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc. Natl. Acad. Sci. 99, 11205–11210.

    Google Scholar 

  • Loeb, L. A. (1996). Many mutations in cancer. Cancer Surv. 28, 329–342.

    Google Scholar 

  • Mabry, M., B. Nelkin and S. Baylin (1996). Evolutionary model of lung cancer, in Lung Cancer: Principles and Practice, H. I. Pass, J. B. Mitchell, D. H. Johnson and A. T. Turrisi (Eds), Philadelphia, PA: Lippencott-Raven, pp. 133–142.

    Google Scholar 

  • Miller, D. L., J. A. Dibbens, A. Damert, W. Risau, M. A. Vadas and G. J. Goodall (1998). The vascular endothelial growth factor mRNA contains an internal ribosome entry site. FEBS Lett. 434, 417–420.

    Article  Google Scholar 

  • Nagy, J. D. (1996). Evolutionarily attracting dispersal strategies in vertebrate metapopulations, PhD dissertation, Arizona State University, Tempe, AZ.

    Google Scholar 

  • Neufeld, G., T. Cohen, S. Gengrinovitch and Z. Poltorak (1999). Vascular endothelial growth factor (VEGF) and its receptors. FASEB 13, 9–22.

    Google Scholar 

  • Qumsiyeh, M. B. and P. Li (2001). Molecular biology of cancer: cytogenetics, in Cancer: Principles and Practice of Oncology, V. T. DeVita Jr., S. Hellman and S. A. Rosenberg (Eds), Philadelphia, PA: Lipincott, Williams and Wilkens.

    Google Scholar 

  • Rowley, D. R. (1998). What might a stromal responsemean to prostate cancer progression? Cancer Metastasis Rev. 17, 411–419.

    Article  Google Scholar 

  • Schofield, D. and R. S. Cotran (1999). Diseases of infancy and childhood, in Pathologic Basis of Disease, 6th edn, R. S. Cotran, V. Kumar and T. Collins (Eds), Philadelphia, PA: W.B. Saunders, pp. 459–491.

    Google Scholar 

  • Stein, I., M. Neeman, D. Shweik, A. Itin and E. Keshet (1995). Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol. Cell Biol. 15, 5363–5368.

    Google Scholar 

  • Terada, T., Y. Okada and Y. Nakanuma (1996). Expression of immunoreactive matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human normal livers and primary liver tumors. Hepatology 23, 1341–1344.

    Google Scholar 

  • Testa, J. R. (1996). Chromosome alterations in human lung cancer, in Lung Cancer: Principles and Practice, H. I. Pass, J. B. Mitchell, D. H. Johnson and A. T. Turrisi (Eds), Philadelphia, PA: Lippencott-Raven, pp. 55–71.

    Google Scholar 

  • Thompson, K. E. and J. A. Royds (1999). Hypoxia and reoxygenation: a pressure for mutant p53 cell selection and tumour progression. Bull. Math. Biol. 61, 759–778.

    Article  Google Scholar 

  • Tuxhorn, J. A., G. E. Ayala and D. R. Rowley (2001). Reactive stroma in prostate cancer progression. J. Urol. 166, 2472–2483.

    Article  Google Scholar 

  • Vajkoczy, P., M. Farhadi, A. Gaumann, R. Heidenreich, R. Erber, A. Wunder, J. C. Tonn, M. D. Menger and G. Breier (2002). Microtumor growth initiates angiogenic sprouting with simultaneous expresseion of VEGF, VEGF receptor-2, and angiopoietin-2. J. Clin. Invest. 109, 777–785.

    Article  Google Scholar 

  • Weibel, E. R. (1984). The Pathway for Oxygen: Structure and Function of the Mammalian Respiratory System, Cambridge: Harvard University Press, p. 425.

    Google Scholar 

  • Weinert, N. (1997). The multiple roles of tumor stroma. Virchows Arch. 430, 433–443.

    Article  Google Scholar 

  • Yancopoulos, G. D., S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand and J. Holash (2000). Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, J.D. Competition and natural selection in a mathematical model of cancer. Bull. Math. Biol. 66, 663–687 (2004). https://doi.org/10.1016/j.bulm.2003.10.001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.10.001

Keywords

Navigation