Skip to main content
Log in

Characteristics of SiC inverter powertrains on common-mode EMI noise

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

This paper studies the characteristics of SiC inverter powertrains on common-mode (CM) EMI emission. First, a CM noise source model of an EV powertrain is built. Then, the factors of switching frequency, switching speed, and switching ringing on the CM noise source are analyzed. Finally, experiments on a conducted EMI test-bed are carried out to verify the influence of SiC inverters on conducted CM EMI emission in EV powertrains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Biela, J., Schweizer, M., Waffler, S., Kolar, J.W.: SiC versus Si—evaluation of potentials for performance improvement of inverter and DC–DC converter systems by SiC power semiconductors. IEEE Trans. Ind. Electron. 58(7), 2872–2882 (2011)

    Article  Google Scholar 

  2. Han, D., Noppakunkajorn, J., Sarlioglu, B.: Comprehensive efficiency, weight, and volume comparison of SiC and Si-based bidirectional DC-DC converters for hybrid electric vehicles. IEEE Trans. Veh. Technol. 63(7), 3001–3010 (2014)

    Article  Google Scholar 

  3. Zhang, Z., Wang, F., Tolbert, L.M., Blalock, B.J., Costinett, D.J.: Evaluation of switching performance of SiC devices in PWM inverter-fed induction motor drives. IEEE Trans. Power Electron. 30(10), 5701–5711 (2015)

    Article  Google Scholar 

  4. Zhang, C., Srdic, S., Lukic, S., Kang, Y., Choi, E., Tafti, E.: A SiC-based 100 kW high-power-density (34 kW/L) electric vehicle traction inverter. In: Proc. IEEE Energy Conversion Congress and Exposition, pp. 3880–3885 (2018)

  5. Zhu, J., Kim, H., Chen, H., Erickson, R., Maksimović, D.: High efficiency SiC traction inverter for electric vehicle applications. In: Proc. IEEE Applied Power Electronics Conference and Exposition, pp. 1428–1433 (2018)

  6. Mitsubishi Electric Corporation. Mitsubishi Electric Develops EV Motor Drive System with Built-in Silicon Carbide Inverter. http://www.mitsubishielectric.com/news/2014/pdf/0213-d.pdf. Accessed 1 May 2019

  7. About The SiC MOSFETs Modules in Tesla Model 3. https://www.pntpower.com/tesla-model-3-powered-by-st-microelectronics-sic-mosfets/. Accessed 1 May 2019

  8. Han, D., Li, S., Wu, Y., Choi, W., Sarlioglu, B.: Comparative analysis on conducted CM EMI emission of motor drives: WBG versus Si devices. IEEE Trans. Ind. Electron. 64(10), 8353–8363 (2017)

    Article  Google Scholar 

  9. Fang, Z., Jiang, D., Zhang, Y.: Study of the characteristics and suppression of EMI of inverter with SiC and Si devices. Chin. J. Electr. Eng. 4(3), 37–46 (2018)

    Article  Google Scholar 

  10. Oswald, N., Stark, B.H., Holliday, D., Hargis, C., Drury, B.: Analysis of shaped pulse transitions in power electronic switching waveforms for reduced EMI generation. IEEE Trans. Ind. Appl. 47(5), 2154–2165 (2011)

    Article  Google Scholar 

  11. Oswald, N., Anthony, P., McNeill, N., Stark, B.H.: An experimental investigation of the tradeoff between switching losses and EMI generation with hard-switched All-Si, Si-SiC, and All-SiC device combinations. IEEE Trans. Power Electron. 29(5), 2393–2407 (2014)

    Article  Google Scholar 

  12. Josifović, I., Popović-Gerber, J., Ferreira, J.A.: Improving SiC JFET switching behavior under influence of circuit parasitics. IEEE Trans. Power Electron. 27(8), 3843–3854 (2012)

    Article  Google Scholar 

  13. Oberdieck, K., Sewergin, A., De Doncker, R.W.: Influence of the voltage-dependent output capacitance of SiC semiconductors on the electromagnetic interference in Dc-Dc converters for electric vehicles. In: Proc. International Symposium on Electromagnetic Compatibility—EMC EUROPE, pp. 1–6 (2017)

  14. Jia, X., Hu, C., Dong, B., He, F., Wang, H., Xu, D.: System-level conducted EMI model for SiC powertrain of electric vehicles. In: Proc. IEEE Applied Power Electronics Conference and Exposition, pp. 885–892 (2020)

  15. Revol, B., Roudet, J., Schanen, J., Loizelet, P.: EMI study of three-phase inverter-fed motor drives. IEEE Trans. Ind. Appl. 47(1), 223–231 (2011)

    Article  Google Scholar 

  16. Bi, C., Jia, K., Wu, Y., et al.: High-frequency electric-motor modelling for conducted CM current prediction in adjustable speed drive system. IET Power Electron. 11(7), 1257–1265 (2018)

    Article  Google Scholar 

  17. Paul, C.R.: Introduction to Electromagnetic Compatibility. Chap. 3. Wiley, Oxford (2006)

    Google Scholar 

  18. Ahmed, M.R., Todd, R., Forsyth, A.J.: Predicting SiC MOSFET behavior under hard-switching, soft-switching, and false turn-on conditions. IEEE Trans. Ind. Electron. 64(11), 9001–9011 (2017)

    Article  Google Scholar 

  19. Wu, Q., Wang, M., Zhou, W., Wang, X., Liu, G., You, C.: Analytical switching model of a 1200 V SiC MOSFET in a high-frequency series resonant pulsed power converter for plasma generation. IEEE Access. 7, 99622–99632 (2019)

    Article  Google Scholar 

  20. International Electrotechnical Commission: Vehicles, boats and internal combustion engines—Radio disturbance characteristics—Limits and methods of measurement for the protection of on-board receivers. CISPR 25, Geneva, Switzerland (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehong Xu.

Appendix

Appendix

Assuming that the electrical parameters of the three-phase ac system are symmetrical:

$$Z_{A} = Z_{B} = Z_{C} .$$
(11)

To solve the circuit shown in Fig. 3, node G is selected as the reference node. The following equations can be obtained for nodes A, B, and C, as well as node N(P):

$$\begin{aligned} \frac{{V_{\text{LISN}} + V_{AN} }}{{Z_{A} }} + sC_{\text{d}} \left( {V_{\text{LISN}} + V_{AN} } \right) + I_{AN} = 0 \hfill \\ \frac{{V_{\text{LISN}} + V_{BN} }}{{Z_{B} }} + sC_{\text{d}} \left( {V_{\text{LISN}} + V_{BN} } \right) + I_{BN} = 0 \hfill \\ \frac{{V_{\text{LISN}} + V_{CN} }}{{Z_{C} }} + sC_{\text{d}} \left( {V_{\text{LISN}} + V_{CN} } \right) + I_{CN} = 0 \hfill \\ I_{AN} + I_{BN} + I_{CN} = \frac{{V_{\text{LISN}} }}{{Z_{\text{LISNs}} //\frac{1}{{s3C_{\text{d}} }}}}. \hfill \\ \end{aligned}$$
(12)

where VAN, VBN, VCN, IAN, IBN, ICN, and VLISN are the Laplace transform of vAN, vBN, vCN, iAN, iBN, iCN, and vLISN, respectively.

According to (12), the voltage VLISN can be derived as follows:

$$V_{\text{LISN}} = - \frac{{Z_{\text{LISNs}} //\frac{1}{{s3C_{\text{d}} }}}}{{Z_{\text{LISNs}} //\frac{1}{{s3C_{\text{d}} }} + \frac{{Z_{A} }}{3}//\frac{1}{{s3C_{\text{d}} }}}}\frac{{V_{AN} + V_{BN} + V_{CN} }}{3}.$$
(13)

Here, the CM noise source VCM0 is defined as follows:

$$V_{\text{CM0}} = \frac{{V_{AN} + V_{BN} + V_{CN} }}{3}.$$
(14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Dong, B., Wang, H. et al. Characteristics of SiC inverter powertrains on common-mode EMI noise. J. Power Electron. 21, 354–363 (2021). https://doi.org/10.1007/s43236-020-00184-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-020-00184-7

Keywords

Navigation