Skip to main content
Log in

Modelled distribution of an invasive alien plant species differs at different spatiotemporal scales under changing climate: a case study of Parthenium hysterophorus L.

  • Research Article
  • Published:
Tropical Ecology Aims and scope Submit manuscript

Abstract

Predicting the impact of climate change on species distribution at different spatial and temporal scales has emerged as one of the important areas of research in invasion ecology and conservation biology. We used MaxEnt (Maximum Entropy Algorithm) to predict the distribution of a highly invasive species, namely Parthenium hysterophorus L. under four Representative Concentration Pathway scenarios (RCPs 2.6, 4.5, 6.0 and 8.5) in 2050 and 2070 at global (world), regional (India) and local (Jammu & Kashmir State) spatial scales. Model predictions indicated differences in the extent of expansion in the distribution of this species under different climate change scenarios with marginal increase in moderately suitable area at the global scale but mostly a declining trend was noticed in its suitable and highly suitable area in future. More or less similar trend was predicted for India where increase in moderately suitable area was evident but decline in suitable and highly suitable areas was observed. In respect of Jammu & Kashmir, moderately suitable as well suitable area showed increase mostly under RCP scenarios of 6.0 and 8.5 in 2050 as well as 2070. Further analysis revealed that current centroid of P. hysterophorus is in south of Jammu and Kashmir and is predicted to shift by an average of 20.48 km in the north-west direction by 2050 and by 36.83 km by 2070. The future suitable area is likely to be around Hirapora Wildlife sanctuary in Kashmir. Pairwise comparison of the niche overlap and dynamics of P. hysterophorus between the native Americas and each of the regions (Africa, Asia, Australia and Oceania) where the species is introduced using Schoener’s D revealed variations in the niche overlap which was high between native Americas and Australia (0.70) and Africa (0.69), moderate between Americas and Asia (0.59) and low between Americas and Oceania (0.24). Exclusion of 25% of rare climatic conditions did not have any effect on the niche overlap index (D). Niche similarity test was not significant for any of the pairwise comparisons of native Americas and the continents in which the species is non-native indicating that the native niche is more similar to the exotic niche than any randomly sampled niche from the exotic range. But the niche equivalency tests showed that the environmental realized niche of P. hysterophorus in its invaded range was not totally equivalent to that in the native range indicating niche differentiation. The niche dynamic indices based on analogous and the entire climatic space in the native and introduced regions revealed a very high niche stability. A very limited niche expansion was noticed only in Asia and niche unfilling was evident in Oceania. Like niche overlap index (D), niche expansion and niche stability were not affected by the exclusion of 25% of rare climatic conditions but marginal change was noticed in niche unfilling in the Oceania. The above predictions have implications for formulation of policies at local, regional and global level for the management of this invasive species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adhikari P, Jeon J, Kim HW et al (2019) Potential impact of climate change on plant invasion in the Republic of Korea. J Ecol Environ 43:1–12

    Google Scholar 

  • Adkins S, Shabbir A (2014) Biology, ecology and management of the invasive parthenium weed (Parthenium hysterophorus L.). Pest Manag Sci 70:1023–1029

    Article  CAS  PubMed  Google Scholar 

  • Aguirre-Gutierrez J, Serna-Chavez M, Villalobos-Arambula AR et al (2015) Similar but not equivalent: ecological niche comparison across closely-related Mexican white pines. Divers Distrib 21:245–257

    Article  Google Scholar 

  • Ahmad R, Khuroo AA, Hamid M et al (2019) Predicting invasion potential and niche dynamics of Parthenium hysterophorus (Congress grass) in India under projected climate change. Biodivers Conserv 28:2319–2344

    Article  Google Scholar 

  • Annapurna C, Singh JS (2003) Variation of Parthenium hysterophorus in response to soil quality: implications for invasiveness. Weed Res 43:190–198

    Article  Google Scholar 

  • Atwater DZ, Ervine C, Barney JN (2018) Climatic niche shifts are common in introduced plants. Nat Ecol Evol 2:34–43

    Article  PubMed  Google Scholar 

  • Bahuguna I, Rathore B, Brahmbhatt R et al (2014) Are the Himalayan glaciers retreating? Curr Sci 106:1008–1013

    Google Scholar 

  • Bajwa AA, Chauhan BS, Farooq M (2016) What do we really know about alien plant invasion? A review of the invasion mechanism of one of the world’s worst weeds. Planta 244:39–57

    Article  CAS  PubMed  Google Scholar 

  • Bajwa AA, Chauhan BS, Adkins S (2017) Morphological, physiological and biochemical responses of two Australian biotypes of Parthenium hysterophorus to different soil moisture regimes. Environ Sci Pollut Res 24:16186–16194

    Article  CAS  Google Scholar 

  • Banerjee AK, Mukherjee A, Guo W et al (2019) Spatio-temporal patterns of climatic niche dynamics of an invasive plant Mikania micrantha Kunth and its potential distribution under projected climate change. Front Ecol Evol  7:291. https://doi.org/10.3389/fevo.2019.00291

    Article  Google Scholar 

  • Barbet-Massin M, Rome Q, Muller F et al (2013) Climate change increases the risk of invasion by the yellow-legged hornet. Biol Conserv 157:4–10

    Article  Google Scholar 

  • Barbet-Massin M, Rome Q, Villemant C (2018) Can species distribution models really predict the expansion of invasive species? PLoS ONE 13:e0193085

    Article  PubMed  PubMed Central  Google Scholar 

  • Barik SK, Adhikari D (2011) Predicting the geographical distribution of an invasive species (Chromolaena odorata L. (King) & H E Robins) in the Indian subcontinent under climate change scenarios. In: Bhatt JR, Singh JS, Singh SP, Tripathi RS, Kohli RK (eds) Invasive alien plants: an ecological appraisal for the Indian subcontinent pp 77–88. CABI International

  • Bellard C, Thuiller W, Leroy B et al (2013) Will climate change promote future invasions? Glob Change Biol 19:3740–3748

    Article  Google Scholar 

  • Bellard C, Jeschke JM, Leroy B et al (2018) Insights from modelling studies on how climate change affects invasive alien species geography. Ecology and Evolution 8:5688–5700

    Article  PubMed  PubMed Central  Google Scholar 

  • Bezeng SB, Van der B, Yessoufou M et al (2017) Climate change may reduce the spread of invasive and invading species in South Africa. Ecosphere 8:e01694

    Article  Google Scholar 

  • Bhowmik PC, Sarkar D (2005) Parthenium hysterophorus L.: its world status and potential management. In: Proceeding of the Second International Conference on Parthenium Management, Bangalore, 5–7 December 2005, pp 1–6

  • Bocsi T, Allen JM, Bellemare J (2016) Plants’ native distributions do not reflect climatic tolerance. Divers Distrib 22:615–624

    Article  Google Scholar 

  • Boria RA, Olson LE, Goodman SM et al (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275:73–77

    Article  Google Scholar 

  • Boyce MS, Vernier PR, Nielsen SE et al (2002) Evaluating resource selection functions. Ecol Model 157:281–300. https://doi.org/10.1016/S0304-3800(02)00200-4

    Article  Google Scholar 

  • Bradley BA (2009) Regional analysis of the impacts of climate change on cheat grass invasion shows potential risk and opportunity. Glob Change Biol 15:196–208

    Article  Google Scholar 

  • Bradley BA, Blumenthal DM, Wilcove DS et al (2010) Predicting plant invasions in an era of global change. Trends Ecol Evol 25:310–318

    Article  PubMed  Google Scholar 

  • Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Let 4:585–589. https://doi.org/10.1098/rsbl.2008.0254

    Article  Google Scholar 

  • Broennimann O, Fitzpatrick MC, Pearman PB et al (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Glob Ecol Biogeogr 21:481–497

    Article  Google Scholar 

  • Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5:694–700

    Article  Google Scholar 

  • Callaway RA, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436e443

    Article  Google Scholar 

  • Callen ST, Miller AJ (2015) Signatures of niche conservatism and niche shift in the North American kudzu (Pueraria montana) invasion. Divers Distrib 21:853–863

    Article  Google Scholar 

  • Cao B, Bai CK, Zhang LL et al (2016) Modeling habitat distribution of Cornus officinalis with Maxent modelling and fuzzy logics in China. J Plant Ecol 9:1–12

    Article  CAS  Google Scholar 

  • Chai SL, Zhang J, Nixon A et al (2016) using risk assessment and habitat suitability models to prioritise invasive species for management in a changing climate. PLoS ONE 11(10):e0165292

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Yin Y, Zhao R, Yang Y et al (2020) Incorporating local adaptation into species distribution modelling of Paeonia mairei, an endemic plant to China. Front Plant Sci 10:1717. https://doi.org/10.3389/fpls.2019.01717

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowie BW, Witkowski ETF, Byrne MJ, Strathie LW, Goodall JM, Venter N (2018) Physiological response of Parthenium hysterophorus to defoliation by the leaf feeding beetle Zygogramma bicolorata. Biol Control 117:35–42

    Article  Google Scholar 

  • Cowie BW, Byrne MJ, Witkowski ETF, Strathie LW et al (2020) Parthenium avoids drought: Understanding the morphological and physiological responses of the invasive herb Parthenium hysterophorus to progressive water stress. Environ Exp Bot 171:103945. https://doi.org/10.1016/j.envexpbot.2019.103945

    Article  Google Scholar 

  • Datta A, Schweiger O, Kühn I (2019) Niche expansion of the invasive plant species Ageratina adeophora despite evolutionary constraints. J Biogeogr 46:1306–1315

    Google Scholar 

  • Dhileepan K, Wilmot Senaratne KAD (2009) How widespread is Parthenium hysterophorus and its biological control agent Zygogramma bicolorata in South Asia? Weed Res 49:557–562

    Article  Google Scholar 

  • Di Cola V, Broennimann O, Petitpierre B et al (2017) Ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40:774–787

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:027–046

    Article  Google Scholar 

  • Elith J, Graham CH (2009) Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:66–77

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T et al (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Esfanjani J, Ghorbani A, ZareChahouki M (2018) MaxEnt modeling for predicting impacts of environmental factors on the potential distribution of Artemisia aucheri and Bromus tomentellus-Festuca ovina in Iran. Pol J Environ Stud 27(3):1041–1047

    Article  Google Scholar 

  • Fletcher D, Gillingham P, Britton J et al (2016) Predicting global invasion risks: a management tool to prevent future introductions. Sci Rep 6:26316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fourcade Y, Engler JO, Rodder D et al (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9:e97122

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedman J, Rubin MJ (2015) All in good time: understanding annual and perennial strategies in plants. Am J Bot 102(4):497–499

    Article  PubMed  Google Scholar 

  • Gnanavel I (2013) Parthenium hysterophorus L.: A major threat to natural and agro eco-systems in India. Sci Int 1:124–131

    Article  Google Scholar 

  • Gomes VHF, Stéphanie DIJFF, Raes N et al (2018) Species distribution modelling: contrasting presence-only models with plot abundance data. Sci Rep 8:1003. https://doi.org/10.1038/s41598-017-18927-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guisan A, Graham CH, Elith J et al (2007) Sensitivity of predictive species distribution models to change in grain size. Divers Distrib 13:332–340

    Article  Google Scholar 

  • Hijmans RJ, Cruz JM, Rojas E et al (2001) DIVA-GIS. A geographic information system for the management and analysis of genetic resources data. Manual (Internet). International Potato Center and International Plant Genetic Resources Institute, Lima, Peru. http://www.diva-gis.org

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Intl J Climatol 25:1965/1978

    Article  Google Scholar 

  • Hirzel AH, Hausser J, Chessel D et al (2002) Ecological-niche factor analysis: how to compute habitat- suitability maps without absence data? Ecology 83:2027–2036

    Article  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2014) Climate Change (2014) Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, p 151

  • Kohli RK, Batish DR, Singh HP, Dogra KS (2006) Status, invasiveness and environmental threats of three tropical American invasive weeds (Parthenium hysterophorus L., Ageratum conyzoides L., Lantana camara L.) in India. Biol Invasions 8:1501–1510

    Article  Google Scholar 

  • Kramer AM, Annis G, Wittmann ME et al (2017) Suitability of Laurentian Great Lakes for invasive species based on global species distribution models and local habitat. Ecosphere 8:e01883

    Article  Google Scholar 

  • Kramer-Schadt S, Niedballa J, Pilgrim JD et al (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1366–1379

    Article  Google Scholar 

  • Kriticos DJ, Brunel S, Ota N et al (2015) Downscaling pest risk analyses: identifying current and future potentially suitable habitats for Parthenium hysterophorus with particular reference to Europe and North Africa. PLoS ONE 10:e0132807

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stohlgren TJ (2009) Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol Nat Environ 1:94–98

    Google Scholar 

  • Lake TA, Runquist RDB, Moeller DA (2020) Predicting range expansion of invasive species: Pitfalls and best practices for obtaining biologically realistic projections. Divers Distrib 26:1767–1779

    Article  Google Scholar 

  • Lamsal P, Kumar L, Aryal A et al (2018) Invasive alien plant species dynamics in the Himalayan region under climate change. Ambio 34:1–14. https://doi.org/10.1007/s13280-018-1017-z

    Article  CAS  Google Scholar 

  • Li X, Mao H, Du G et al (2019) Spatiotemporal evolution and impacts of climate change on bamboo distribution in China. J Environ Manag 248:109265

    Article  Google Scholar 

  • Liu C, Wolter C, Xian W et al (2020) Most invasive species largely conserve their climatic niche. Proc Natl Acad Sci 117(38):23643–23651. https://doi.org/10.1073/pnas.2004289117

    Article  CAS  PubMed  Google Scholar 

  • Mainali K, Dhileepan K, Warren D et al (2015) Projecting future expansion of invasive species: comparing and improving methodologies. Glob Change Biol 21:4464–4480. https://doi.org/10.1111/gcb.13038

    Article  Google Scholar 

  • Malik AH, Rashid I, Ganie AH et al (2015) Benefitting from Geoinformatics: estimating floristic diversity of Warwan valley in Northwestern Himalaya, India. J Mt Sci 12(4):854–863. https://doi.org/10.1007/s11629-015-3457-2

    Article  Google Scholar 

  • Manzoor SA, Geoffrey G, Martin L (2018) Species distribution model transferability and model grain size–finer may not always be better. Sci Rep 8(1):7168

    Article  PubMed  PubMed Central  Google Scholar 

  • McConnachie AJ, Strathie LW, Mersie W, Gebrehiwot L, Zewdie K, Abdurehim A, Abrha B, Araya T, Asaregew F, Assefa F, Gebre-Tsadik R, Nigatu L, Tadesse B, Tana T (2010) Current and potential geographical distribution of the invasive plant Parthenium hysterophorus (Asteraceae) in eastern and southern Africa. Weed Res 51(1):71–84

    Article  Google Scholar 

  • Merow C, Smith MJ, Silander Jr JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36(10):1058–1069

    Article  Google Scholar 

  • Nielsen C, Hartvig P, Kollmann J (2008) Predicting the distribution of the invasive alien Heracleum mantegazzianum at two different spatial scales. Divers Distrib 14:307–317

    Article  Google Scholar 

  • Pauchard A, Escudero A, Garcia RA et al (2016) Pine invasions in treeless environments: dispersal overruns microsite heterogeneity. Ecol Evol 6:447–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M et al (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34(1):102–117

    Article  Google Scholar 

  • Petitpierre B, Kueffer C, Broennimann O et al (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335(6074):1344–1348. https://doi.org/10.1126/science.1215933

    Article  CAS  PubMed  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudik M, Elith J et al (2009) Sample selection bias and presence-only models of species distributions. Ecol Appl 19:181–197

    Article  PubMed  Google Scholar 

  • Pittman SJ, Brown KA (2011) Multi-Scale approach for predicting fish species distributions across coral reef seascapes. PLoS ONE 6(5): https://doi.org/10.1371/journal.pone.0020583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porfirio LL, Harris RMB, Lefroy EC et al (2014) Improving the use of species distribution models in conservation planning and management under climate change. PLoS ONE 9:e113749

    Article  PubMed  PubMed Central  Google Scholar 

  • Priyanka N, Joshi PK (2013) Effects of climate change on invasion potential distribution of Lantana camara. Earth Sci Clim Change 4:164

    Google Scholar 

  • Ramirez-albores JE, Bustamante RO, Badano EI (2016) Improved predictions of the geographic distribution of invasive plants using climatic niche models. PLoS ONE 11:e0156029

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao RS (1956) Parthenium hysterophorus Linn.: a new record for India. J Bombay Nat Hist Soc 54:218–220

    Google Scholar 

  • Rashid I, Romshoo SA, Vijayalakshmi T (2013) Geospatial modelling approach for identifying disturbance regimes and biodiversity rich areas in North Western Himalayas, India. Biodivers Conserv 22(11):2537–2566

    Article  Google Scholar 

  • Rashid I, Romshoo SA, Chaturvedi RK et al (2015) Projected climate change impacts on vegetation distribution over Kashmir Himalayas. Clim Change 132(4):601–613

    Article  Google Scholar 

  • Reside AE, Critchell K, Crayn DM, Goosem M, Goosem S, Hoskin CJ et al (2019) Beyond the model: expert knowledge improves predictions of species’ fates under climate change. Ecol Appl 29:e01824. https://doi.org/10.1002/eap.1824

    Article  PubMed  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Shrestha UB, Shrestha BB (2019) Climate change amplifies plant invasion hotspots in Nepal. Divers Distrib 25(10):1599–1612. https://doi.org/10.1111/ddi.12963

    Article  Google Scholar 

  • Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE 7:e36741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syfert MM, Smith MJ, Coomes DA (2013) The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 8:e55158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thuiller W, Richardson DM, Pysek P et al (2005) Niche-based modeling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250

    Article  Google Scholar 

  • Thuiller W, Richardson D, Midgley G (2007) Will climate change promote alien plant invasions? In: Nentwig W (ed) Biological invasions. Springer-Verlag, Berlin

    Google Scholar 

  • Thuiller W, Georges D, Engler R et al (2016) Package ‘biomod2’. ftp://ftp2.de.freebsd.org/ pub/ misc/cran/web/packages/biomod2/biomod2.pdf

  • Tingley R, Vallinoto M, Sequeira F et al (2014) Realized niche shift during a global biological invasion. Proc Natl Acad Sci USA 111:10233–10238

    Article  CAS  PubMed  Google Scholar 

  • Walther G, Roques A, Hulme P et al (2009) Alien species in a warmer world: Risks and opportunities. Trends Ecol Evol 23:686–693

    Article  Google Scholar 

  • Ward DF (2007) Modelling the potential geographic distribution of invasive ant species in New Zealand. Biol Invasions 9:723–735. https://doi.org/10.1007/s10530-006-9072-y

    Article  Google Scholar 

  • Wei JF, Zhang H, Zhao W et al (2017) Niche shifts and the potential distribution of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) under climate change. PLoS ONE 12:e0180913

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan HY, Feng L, Zhao YF et al (2019) (2019) Predicting the potential distribution of an invasive species, Erigeron canadensis L, in China with a maximum entropy model . Glob Ecol Conserv 21:e00822

    Article  Google Scholar 

  • Yang XQ, Kushwaha SPS, Saran S et al (2013) Maxent modeling for predicting the potential distribution of medicinal plant, Justiciaadhatoda L: in Lesser Himalayan foothills. Ecol Eng 51:83–87

    Article  CAS  Google Scholar 

  • Yaqoob MB, Nisar A, Naqshi AR (1988) Extension of distribution of an obnoxious American weed, Parthenium hysterophorus L. (Asteraceae). J Econ Taxon Bot 12:375–376

    Google Scholar 

  • Yates K, Bouchet P, Caley M (2018) Outstanding challenges in the transferability of ecological models. Trends Ecol Evol 33(10):790–802. https://doi.org/10.1016/j.tree.2018.08.001

    Article  PubMed  Google Scholar 

  • Yi YJ, Cheng X, Yang ZF et al (2016) Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol Eng 92:260–269

    Article  Google Scholar 

  • Zaz S, Romshoo SA, Thokuluwa R et al (2018) Climatic and extreme weather variations over Mountainous Jammu and Kashmir, India: physical explanations based on observations and modelling. Atmos Chem Phys Discuss. https://doi.org/10.5194/acp-2018-201

    Article  Google Scholar 

Download references

Acknowledgements

We thank Head, Department of Botany, University of Kashmir for providing laboratory facilities. Support under the CPEPA by the UGC, New Delhi to the University of Kashmir is also gratefully acknowledged which helped in conduct of present work as well. We also acknowledge the help extended by Dr. Alaaeldin Soultan, Swedish University of Agricultural Sciences in the analysis of data. We would also like to thank the anonymous reviewers for their constructive comments which helped us to significantly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafar A. Reshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mushtaq, S., Reshi, Z.A., Shah, M.A. et al. Modelled distribution of an invasive alien plant species differs at different spatiotemporal scales under changing climate: a case study of Parthenium hysterophorus L.. Trop Ecol 62, 398–417 (2021). https://doi.org/10.1007/s42965-020-00135-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42965-020-00135-0

Keywords

Navigation