Skip to main content
Log in

Love-Type Wave Propagation in an Inhomogeneous Cracked Porous Medium Loaded by Heterogeneous Viscous Liquid Layer

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

Love-type wave propagation through inhomogeneous dual porous layer has been investigated in this present article. The heterogeneous fluid-saturated dual porous stratum is bounded by a non-homogeneous viscous liquid layer and an isotropic half-space. Impacts of viscosity, inhomogeneity, matrix porosity along with fracture porosity have been calculated in detail.

Methods

Navier–Stokes equation has been used to acquire the velocity component in heterogeneous viscous liquid layer. Separable variable method has been performed to convert partial differential equations into ordinary differential equations. Elimination of arbitrary constants from boundary conditions leads to complex dispersion relation of Love-type wave propagation.

Results

The complex equation consists of Whittaker functions and their derivatives which are expanded up to second term by approximating large parameters. Dispersion and attenuation equations of Love-type wave have been decoupled for implementing several graphs which illustrate reverberations of heterogeneity parameter, porosity, volume fraction of fractures, density on dispersive and damping nature of Love-type wave. Fundamental mode and higher modes of Love-type wave are observed through graphical execution. Effects of inhomogeneity parameters are also portrayed through surface plotting.

Conclusions

Correlation of liquid layer and fractured porous layer in crustal region has been established both analytically and graphically which is also validated by applying particular conditions. Heterogeneity parameter, volume fraction of fractures, porosity, density have major impact on dispersion and attenuation of Love-type wave propagating in dual porous medium. This solid–liquid collaborative study unlocks a different area of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28(2):179–191

    Article  MathSciNet  Google Scholar 

  2. Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498

    Article  MathSciNet  Google Scholar 

  3. Bai M, Elsworth D, Roegiers JC (1993) Modeling of naturally fractured reservoirs using deformation dependent flow mechanism. Int J Rock Mech and Min Sci Geomech 30(7):1185–1191

    Article  Google Scholar 

  4. Cho TF, Plesha ME, Haimson BC (1991) Continuum modelling of jointed porous rock. Int J Numer Anal Met 15(5):333–53

    Article  Google Scholar 

  5. Barenblatt GI, Zheltov IP, Kochina IN (1960) Basic concepts in the theory of seepage homogeneous liquids in fissured rocks [strata]. J Appl Math Mech 24(5):1286–1303

    Article  Google Scholar 

  6. Warren JE, Root PJ (1963) The behavior of naturally fractured reservoirs. Soc Petrol Eng J 3(03):245–255

    Article  Google Scholar 

  7. Aifantis EC (1980) On the problem of diffusion in solids. Acta Mech 37:265–296

    Article  MathSciNet  Google Scholar 

  8. Wilson RK, Aifantis EC (1982) On the theory of consolidation with double porosity. Int J Eng Sci 20(9):1009–1035

    Article  Google Scholar 

  9. Wilson RK, Aifantis EC (1984) A double porosity model for acoustic wave propagation in fractured-porous rock. Int J Eng Sci 22(8–10):1209–1217

    Article  Google Scholar 

  10. Bescos DE, Vgenopoulou I, Providakis CP (1989) Dynamics of saturated rocks, II: body waves. J Eng Mech 115(5):996–1016

    Article  Google Scholar 

  11. Bear J, Berkowitz B (1987) Groundwater flow and pollution in fractured rock aquifers. In: Novak P (ed) Developments in Hydraulic Engineering. Elsevier, Amsterdam, pp 175–238

    Google Scholar 

  12. Berryman JG, Wang HF (1995) The elastic coefficients of double-porosity models for fluid transport in jointed rock. J Geophys Res Solid Earth 100(B12):24611–24627

    Article  Google Scholar 

  13. Berryman JG, Wang HF (2000) Elastic wave propagation and attenuation in a double-porosity dual-permeability media. Int J Rock Mech Min 37(1–2):63–78

    Article  Google Scholar 

  14. Dal Moro G, Ferigo F (2011) Joint analysis of Rayleigh-and Love-wave dispersion: Issues, criteria and improvements. J Appl Geophys 75(3):573–589

    Article  Google Scholar 

  15. Sang S, Sandgren E (2019) Study of in-plane wave propagation in 2-dimensional anisotropic elastic metamaterials. J Vib Eng Technol 7(1):63–72

    Article  Google Scholar 

  16. Ji C, Yao L, Li C (2020) Transverse Vibration and Wave Propagation of Functionally Graded Nanobeams with Axial Motion. J Vib Eng Technol 8:257–266. https://doi.org/10.1007/s42417-019-00130-3

    Article  Google Scholar 

  17. Pandit DK, Kundu S, Gupta S (2017) Propagation of Love waves in a prestressed Voigt-type viscoelastic orthotropic functionally graded layer over a porous half-space. Acta Mechanica 228(3):871–880

    Article  MathSciNet  Google Scholar 

  18. Gupta S, Bhengra N (2019) Study of the surface wave vibrations in a functionally graded material layered structure: a WKB method. Math Mech Solids 24(4):1204–1220

    Article  MathSciNet  Google Scholar 

  19. Baroi J, Sahu SA, Singh MK (2018) Dispersion of polarized shear waves in viscous liquid over a porous piezoelectric substrate. J Intell Mat Syst Struct 29(9):2040–2048

    Article  Google Scholar 

  20. Sharma MD, Kumar R, Gogna ML (1991) Surface wave propagation in a liquid-saturated porous layer overlying a homogeneous transversely isotropic half-space and lying under a uniform layer of liquid. Int J Solids Struct 27(10):1255–1267

    Article  Google Scholar 

  21. Kumar R, Hundal BS (2007) Surface wave propagation in a fluid saturated incompressible porous half-space lying under two layers of different liquids. Earth Planets Space 59(8):929–936

    Article  Google Scholar 

  22. Kiełczyński P, Szalewski M, Balcerzak A (2012) Effect of a viscous liquid loading on Love wave propagation. Int J Solids Struct 49(17):2314–2319

    Article  Google Scholar 

  23. Wadha SK (1971) The disturbance due to a point source in a homogeneous liquid layer over a heterogeneous liquid half-space. Pure Appl Geophys 89(1):67–83

    Article  Google Scholar 

  24. Ke LL, Wang YS, Zhang ZM (2006) Love waves in an inhomogeneous fluid saturated porous layered half-space with linearly varying properties. Soil Dyn Earthq Eng 26(6–7):574–581

    Article  Google Scholar 

  25. Kakar R, Kakar S (2012) Propagation of Love waves in a non-homogeneous elastic media. J Acad Ind Res 1(6):323–328

    MATH  Google Scholar 

  26. Alam P, Kundu S (2017) Influences of heterogeneities and initial stresses on the propagation of Love-type waves in a transversely isotropic layer over an inhomogeneous half-Space. J Solid Mech 9(4):783–793

    Google Scholar 

  27. Saha A, Kundu S, Gupta S, Vaishnav PK (2015) Love Waves in a Heterogeneous Orthotropic Layer Under Initial Stress Overlying a Gravitating Porous Half-Space. Proc Indian Natl Sci Acad 81(5):1193–1205

    Article  Google Scholar 

  28. McMullan C, Mehta H, Gizeli E, Mahta H, Lowe CR (2000) Modelling of the mass sensitivity of the Love wave device in the presence of a viscous liquid. J Phys D Appl Phys 33(23):3053

    Article  Google Scholar 

  29. Whittaker ET, Watson GN (1990) A course in modern analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  30. Qian ZH, Jin F, Lu T, Kishimoto K (2009) Transverse surface waves in an FGM layered structure. Acta Mech 207(3):183–193

    Article  Google Scholar 

  31. Dai ZJ, Kuang ZB (2006) Love waves in double porosity media. J Sound Vib 296(4–5):1000–1012

    Article  Google Scholar 

  32. Gubbins D (1990) Seismology and plate tectonics. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

Authors are sincerely grateful to Indian Institute of Technology (Indian School of Mines), Dhanbad, India for providing great opportunity, guidance, best facilities and equipments.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachaita Dutta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} \rho _{11}= & {} \left( 1-\phi _{t}\right) \rho _{s}+\left( \tau _{t}-1\right) \phi _{t}\rho _{l},~\rho _{33}=\tau _{f}v_{f}\phi _{f}\rho _{l},~2\rho _{12}\\= & {} \left[ \left( \tau _{f}-1\right) v_{f}\phi _{f}-\left( \tau _{m}-1\right) v_{m}\phi _{m}-\left( \tau _{t}-1\right) \phi _{t}\right] \rho _{l},\\ 2\rho _{13}= & {} \left[ \left( \tau _{m}-1\right) v_{m}\phi _{m}-\left( \tau _{f}-1\right) v_{f}\phi _{f}-(\tau _{t}-1)\phi _{t}\right] \rho _{l},~2\rho _{23}\\= & {} \left[ \left( \tau _{t}-1\right) \phi _{t}-\left( \tau _{m}-1\right) v_{m}\phi _{m}-\left( \tau _{f}-1\right) v_{f}\phi _{f}\right] \rho _{l},\\ \rho _{22}= & {} \tau _{m}v_{m}\phi _{m}\rho _{l},~\kappa =\kappa ^{(11)}\kappa ^{(22)}-\kappa ^{(12)}\kappa ^{(21)},~\Upsilon _{12}\\= & {} \frac{\eta _{l}v_{m}\phi _{m}\left( v_{m}\phi _{m}\kappa ^{(22)}-v_{f}\phi _{f}\kappa ^{(21)}\right) }{\kappa },\\ \Upsilon _{23}= & {} \frac{\eta _{l}v_{f}v_{m}\phi _{m}\phi _{f}\kappa ^{(12)}}{\kappa },~\Upsilon _{13}\\= & {} \frac{\eta _{l}v_{f}\phi _{f}\left( v_{f}\phi _{f}\kappa ^{(11)}-v_{m}\phi _{m}\kappa ^{(12)}\right) }{\kappa },~\bar{\zeta _{0}}=k_{1}\left( \alpha _{0}-\delta \beta _{0}\right) ,\\ \zeta _{0}^{'}= & {} k_{1}(\delta \alpha _{0}+\beta _{0}),~\alpha _{0}=\sqrt{\frac{\sqrt{\alpha _{0}^{*^{2}}+\beta _{0}^{*^{2}}}+\alpha _{0}^{*}}{2}},~\beta _{0}\\= & {} \sqrt{\frac{\sqrt{\alpha _{0}^{*^{2}}+\beta _{0}^{*^{2}}}-\alpha _{0}^{*}}{2}},~\alpha _{0}^{*}=1-\frac{B^{*}c\delta }{c_{s2}k_{1}H_{1}\left( 1+\delta ^{2}\right) }\\ \beta _{0}^{*}= & {} -\frac{B^{*}c}{c_{s2}k_{1}H_{1}(1+\delta ^{2})},~B^{*}=\frac{c_{s2}\rho _{0}H_{1}}{\eta _{0}},~c_{s2}=\left[ \frac{\overline{M}\alpha }{\beta }\left( \overline{\rho _{11}}\right. \right. \\&\left. \left. +\frac{2\overline{\Upsilon _{12}}^{2}\overline{\rho _{12}}+\overline{\Upsilon _{12}}^{2}\overline{\rho _{22}} -\omega ^{2}\overline{\rho _{12}}^{2}\overline{\rho _{22}}}{s_{1}}\right. \right. \\&\left. \left. +\frac{2\overline{\Upsilon _{13}}^{2}\overline{\rho _{13}}+\overline{\Upsilon _{13}}^{2}\overline{\rho _{33}}-\omega ^{2}\overline{\rho _{13}}^{2}\overline{\rho _{33}}}{s_{2}}\right) \right] ^{\frac{1}{2}},\\ s_{1}= & {} \overline{\Upsilon _{12}}^{2}+\omega ^{2}\overline{\rho _{22}}^{2},~s_{2}=\overline{\Upsilon _{13}}^{2}+\omega ^{2}\overline{\rho _{33}}^{2},~\delta _{1}\\= & {} \frac{\omega c_{s2}^{2}\beta }{2\overline{M}\alpha }\left[ \frac{\overline{\Upsilon _{12}}\left( \overline{\rho _{12}}+\overline{\rho _{22}}\right) ^{2}}{s_{1}}\right. \\&\left. +\frac{\overline{\Upsilon _{13}}\left( \overline{\rho _{13}}+\overline{\rho _{33}}\right) ^{2}}{s_{2}}\right] ,~\bar{\zeta _{3}}=k_{1}\sqrt{1-\frac{c^{2}}{c_{3}^{2}}},~\zeta _{3}^{'}=\delta \bar{\zeta _{3}}, \overline{\rho _{d_{r}}}\\= & {} \overline{\rho _{11}}-\frac{\overline{\rho _{22}}\left( \overline{\rho _{12}}^{2}-\frac{\overline{\Upsilon _{12}}^{2}}{\omega ^{2}}\right) -\frac{2\overline{\rho _{12}}\overline{\Upsilon _{12}}^{2}}{\omega ^{2}}}{\overline{\rho _{22}}^{2}+\frac{\overline{\Upsilon _{12}}^{2}}{\omega ^{2}}}\\&-\frac{\overline{\rho _{33}}\left( \overline{\rho _{13}}^{2}-\frac{\overline{\Upsilon _{13}}^{2}}{\omega ^{2}}\right) -\frac{2\overline{\rho _{13}}\overline{\Upsilon _{13}}^{2}}{\omega ^{2}}}{\overline{\rho _{33}}^{2}+\frac{\overline{\Upsilon _{13}}^{2}}{\omega ^{2}}},~q_{1}\\= & {} \sqrt{\frac{\sqrt{\alpha _{2}^{2}+\beta _{2}^{2}}+\alpha _{2}}{2}}, \overline{\rho _{d_{i}}}\\= & {} \frac{\overline{\Upsilon _{12}}+\overline{\Upsilon _{13}}}{\omega }+\frac{\frac{\overline{\Upsilon _{12}}}{\omega }\left( \overline{\rho _{12}}^{2}-\frac{\overline{\Upsilon _{12}}^{2}}{\omega ^{2}}\right) +\frac{2\overline{\rho _{12}}\overline{\rho _{22}}\overline{\Upsilon _{12}}}{\omega }}{\overline{\rho _{22}}^{2} +\frac{\overline{\Upsilon _{12}}^{2}}{\omega ^{2}}}\\&+\frac{\frac{\overline{\Upsilon _{13}}}{\omega }\left( \overline{\rho _{13}}^{2}-\frac{\overline{\Upsilon _{13}}^{2}}{\omega ^{2}}\right) +\frac{2\overline{\rho _{13}}\overline{\rho _{33}}\overline{\Upsilon _{13}}}{\omega }}{\overline{\rho _{33}}^{2}+\frac{\overline{\Upsilon _{13}}^{2}}{\omega ^{2}}},~q_{2}=\sqrt{\frac{\sqrt{\alpha _{2}^{2}+\beta _{2}^{2}}-\alpha _{2}}{2}},\\ \alpha _{2}= & {} \frac{c^{2}}{c_{s2}^{2}}-(1-\delta ^{2}),~\beta _{2}=2\left[ \frac{\delta _{1}c^{2}}{c_{s2}^{2}}-\delta \right] ,~A=\frac{c^{2}(\alpha -\beta )}{2\alpha \beta c_{s2}^{2}\sqrt{\alpha _{2}^{2}+\beta _{2}^{2}}},~r_{1}\\= & {} \sqrt{\frac{\sqrt{\alpha _{3}^{2}+\beta _{3}^{2}}+\alpha _{3}}{2}},~r_{2}=\sqrt{\frac{\sqrt{\alpha _{3}^{2}+\beta _{3}^{2}}-\alpha _{3}}{2}},\\ \alpha _{3}= & {} (1-4\delta _{1}^{2})\alpha _{2}+4\delta _{1}\beta _{2},~\beta _{3}\\= & {} 4\delta _{1}\alpha _{2}-\left( 1-4\delta _{1}^{2}\right) \beta _{2},~D_{11}^{n}\\= & {} {\text {e}}^{k_{1}q_{2}\left( \frac{1+\alpha H_{1}}{\alpha }\right) }\cos \left[ k_{1}q_{1}\left( \frac{1+\alpha H_{1}}{\alpha }\right) \right] ,\\ D_{12}^{n}= & {} -{\text {e}}^{k_{1}q_{2}\left( \frac{1+\alpha H_{1}}{\alpha }\right) }\sin \left[ k_{1}q_{1}\left( \frac{1+\alpha H_{1}}{\alpha }\right) \right] ,~\bar{a}^{n}\\= & {} -2k_{1}q_{2}\left( \frac{1+\alpha H_{1}}{\alpha }\right) ,~\bar{b}^{n}\\= & {} 2k_{1}q_{1}\left( \frac{1+\alpha H_{1}}{\alpha }\right) ,~\bar{c}^{n}=-k_{1}Ar_{2},\\ \bar{d}^{n}= & {} k_{1}Ar_{1},~f^{n}=\bar{c}^{n}\log \sqrt{\bar{a}^{n^{2}}+\bar{b}^{n^{2}}}\\&-\bar{d}^{n}\tan ^{-1}\left( \frac{\bar{b}^{n}}{\bar{a}^{n}}\right) ,~g^{n}=\bar{d}^{n}\log \sqrt{\bar{a}^{n^{2}}+\bar{b}^{n^{2}}}+\bar{c}^{n}\tan ^{-1}\left( \frac{\bar{b}^{n}}{\bar{a}^{n}}\right) ,~D_{21}^{n}=e^{f^{n}}\cos g^{n},\\ D_{22}^{n}= & {} {\text {e}}^{f^{n}}\sin g^{n},~D_{31}^{n} =1\\&+\frac{2k_{1}Ar_{1}q_{1}(k_{1}Ar_{2}+0.5)-k_{1}^{2}A^{2}r_{1}^{2}q_{2} +q_{2}(k_{1}Ar_{2}+0.5)^{2}}{2k_{1}(q_{1}^{2}+q_{2}^{2})\left( \frac{1+\alpha H_{1}}{\alpha }\right) },\\ D_{32}^{n}= & {} \frac{-k_{1}^{2}A^{2}r_{1}^{2}q_{1}+\left( k_{1}Ar_{2}+0.5\right) ^{2}q_{1} -2k_{1}Ar_{1}q_{2}\left( k_{1}Ar_{2}+0.5\right) }{2k_{1} \left( q_{1}^{2}+q_{2}^{2}\right) \left( \frac{1+\alpha H_{1}}{\alpha }\right) },\\ B_{11}^{n}= & {} D_{31}^{n}(D_{11}^{n}D_{21}^{n}-D_{12}^{n}D_{22}^{n})-D_{32}^{n}(D_{11}^{n}D_{22}^{n}+D_{12}^{n}D_{21}^{n}),~B_{12}^{n}\\&=D_{32}^{n}\left( D_{11}^{n}D_{21}^{n}-D_{12}^{n}D_{22}^{n}\right) +D_{31}^{n}\left( D_{11}^{n}D_{22}^{n}+D_{12}^{n}D_{21}^{n}\right) ,\\ E_{11}^{n}= & {} {\text {e}}^{-k_{1}q_{2}\left( \frac{1+\alpha H_{1}}{\alpha }\right) }\cos \left[ k_{1}q_{1}\left( \frac{1+\alpha H_{1}}{\alpha }\right) \right] ,~E_{12}^{n}\\= & {} {\text {e}}^{-k_{1}q_{2}\left( \frac{1+\alpha H_{1}}{\alpha }\right) }\sin \left[ k_{1}q_{1}\left( \frac{1+\alpha H_{1}}{\alpha }\right) \right] ,\\ \bar{a_{1}}^{n}= & {} 2k_{1}q_{2}\left( 1+\alpha H_{1}\right) \alpha ^{-1},~\bar{b_{1}}^{n}\\= & {} -2k_{1}q_{1}\left( 1+\alpha H_{1}\right) \alpha ^{-1},~\bar{c_{1}}^{n}=k_{1}Ar_{2},~\bar{d_{1}}^{n}=-k_{1}Ar_{1}, \\ f_{1}^{n}= & {} \bar{c_{1}}^{n}\log \sqrt{\bar{a_{1}}^{n^{2}}+\bar{b_{1}}^{n^{2}}}-\bar{d_{1}}^{n}\tan ^{-1}\left( \frac{\bar{b_{1}}^{n}}{\bar{a_{1}}^{n}}\right) ,~g_{1}^{n}\\= & {} \bar{d_{1}}^{n}\log \sqrt{\bar{a_{1}}^{n^{2}}+\bar{b_{1}}^{n^{2}}}+\bar{c_{1}}^{n}\tan ^{-1}\left( \frac{\bar{b_{1}}^{n}}{\bar{a_{1}}^{n}}\right) ,~E_{21}^{n}=e^{f_{1}^{n}}\cos g_{1}^{n},\\ E_{22}^{n}= & {} {\text {e}}^{f_{1}^{n}}\sin g_{1}^{n},~E_{31}^{n}\\= & {} 1-\frac{2k_{1}Ar_{1}q_{1}(k_{1}Ar_{2}-0.5)-k_{1}^{2}A^{2}r_{1}^{2}q_{2}+q_{2}(k_{1}Ar_{2}-0.5)^{2}}{2k_{1}(q_{1}^{2}+q_{2}^{2})\left( \frac{1+\alpha H_{1}}{\alpha }\right) },\\ E_{32}^{n}= & {} \frac{k_{1}^{2}A^{2}r_{1}^{2}q_{1}-\left( k_{1}Ar_{2}-0.5\right) ^{2}q_{1} +2k_{1}Ar_{1}q_{2}\left( k_{1}Ar_{2}-0.5\right) }{2k_{1}\left( q_{1}^{2}+q_{2}^{2}\right) \left( \frac{1+\alpha H_{1}}{\alpha }\right) },\\ B_{21}^{n}= & {} E_{31}^{n}(E_{11}^{n}E_{21}^{n}-E_{12}^{n}E_{22}^{n})-E_{32}^{n}(E_{11}^{n}E_{22}^{n}+E_{12}^{n}E_{21}^{n}),~B_{22}^{n}\\= & {} E_{32}^{n}\left( E_{11}^{n}E_{21}^{n}-E_{12}^{n}E_{22}^{n}\right) +E_{31}^{n}\left( E_{11}^{n}E_{22}^{n}+E_{12}^{n}E_{21}^{n}\right) ,\\ F_{11}^{n}= & {} {\text {e}}^{\frac{k_{1}q_{2}}{\alpha }}\cos \left( \frac{k_{1}q_{1}}{\alpha }\right) ,~F_{12}^{n}\\= & {} -{\text {e}}^{\frac{k_{1}q_{2}}{\alpha }}\sin \left( \frac{k_{1}q_{1}}{\alpha }\right) ,~\bar{a_{2}}^{n}\\= & {} -2k_{1}q_{2}\alpha ^{-1},~\bar{b_{2}}^{n}=2k_{1}q_{1}\alpha ^{-1},~\bar{c_{2}}^{n}\\= & {} -k_{1}Ar_{2},~\bar{d_{2}}^{n}=k_{1}Ar_{1}, \end{aligned}$$
$$\begin{aligned} f_{2}^{n}= & {} \bar{c_{2}}^{n}\log \sqrt{\bar{a_{2}}^{n^{2}}+\bar{b_{2}}^{n^{2}}}\\&-\bar{d_{2}}^{n}\tan ^{-1}\left( \frac{\bar{b_{2}}^{n}}{\bar{a_{2}}^{n}}\right) ,~g_{2}^{n}\\= & {} \bar{d_{2}}^{n}\log \sqrt{\bar{a_{2}}^{n^{2}}+\bar{b_{2}}^{n^{2}}}+\bar{c_{2}}^{n}\tan ^{-1}\left( \frac{\bar{b_{2}}^{n}}{\bar{a_{2}}^{n}}\right) ,~F_{21}^{n}\\= & {} {\text {e}}^{f_{2}^{n}}\cos g_{2}^{n},\\ F_{22}^{n}= & {} {\text {e}}^{f_{2}^{n}}\sin g_{2}^{n},~F_{31}^{n}\\= & {} 1+\frac{2k_{1}Ar_{1}q_{1}\left( k_{1}Ar_{2}+0.5\right) -k_{1}^{2}A^{2}r_{1}^{2}q_{2}+(k_{1}Ar_{2}+0.5)^{2}q_{2}}{2k_{1}\alpha ^{-1}(q_{1}^{2}+q_{2}^{2})},\\ F_{32}^{n}= & {} \frac{-k_{1}^{2}A^{2}r_{1}^{2}q_{1} +\left( k_{1}Ar_{2}+0.5\right) ^{2}q_{1}-2k_{1}Ar_{1}q_{2}\left( k_{1}Ar_{2}+0.5\right) }{2k_{1}\alpha ^{-1}\left( q_{1}^{2}+q_{2}^{2}\right) },\\ B_{31}^{n}= & {} F_{31}^{n}\left( F_{11}^{n}F_{21}^{n}-F_{12}^{n}E_{22}^{n}\right) \\&-F_{32}^{n}\left( F_{11}^{n}F_{22}^{n}+F_{12}^{n}F_{21}^{n}\right) ,~B_{32}^{n}\\= & {} F_{32}^{n}\left( F_{11}^{n}F_{21}^{n}-F_{12}^{n}F_{22}^{n}\right) +F_{31}^{n}\left( F_{11}^{n}F_{22}^{n}+F_{12}^{n}F_{21}^{n}\right) ,\\ I_{11}^{n}= & {} {\text {e}}^{-\frac{k_{1}q_{2}}{\alpha }}\cos \left( \frac{k_{1}q_{1}}{\alpha }\right) ,~I_{12}^{n}={\text {e}}^{-\frac{k_{1}q_{2}}{\alpha }}\sin \left( \frac{k_{1}q_{1}}{\alpha }\right) ,\\ \bar{a_{3}}^{n}= & {} 2k_{1}q_{2}\alpha ^{-1},~\bar{b_{3}}^{n}\\= & {} -2k_{1}q_{1}\alpha ^{-1},~\bar{c_{3}}^{n}=k_{1}Ar_{2},~\bar{d_{3}}^{n}=-k_{1}Ar_{1},\\ f_{3}^{n}= & {} \bar{c_{3}}^{n}\log \sqrt{\bar{a_{3}}^{n^{2}}+\bar{b_{3}}^{n^{2}}}\\&-\bar{d_{3}}^{n}\tan ^{-1}\left( \frac{\bar{b_{3}}^{n}}{\bar{a_{3}}^{n}}\right) ,~g_{3}^{n}\\= & {} \bar{d_{3}}^{n}\log \sqrt{\bar{a_{3}}^{n^{2}}+\bar{b_{3}}^{n^{2}}}+\bar{c_{3}^{n}}\tan ^{-1}\left( \frac{\bar{b_{3}}^{n}}{\bar{a_{3}}^{n}}\right) ,~I_{21}^{n}\\= & {} {\text {e}}^{f_{3}^{n}}\cos g_{3}^{n},\\ I_{22}^{n}= & {} {\text {e}}^{f_{3}^{n}}\sin g_{3}^{n},~I_{31}^{n}\\= & {} 1-\frac{2k_{1}Ar_{1}q_{1}\left( k_{1}Ar_{2}-0.5\right) -k_{1}^{2}A^{2}r_{1}^{2}q_{2} +(k_{1}Ar_{2}-0.5)^{2}q_{2}}{2k_{1}\alpha ^{-1}\left( q_{1}^{2} +q_{2}^{2}\right) },\\ I_{32}^{n}= & {} \frac{k_{1}^{2}A^{2}r_{1}^{2}q_{1}-\left( k_{1}Ar_{2}-0.5\right) ^{2}q_{1} +2k_{1}Ar_{1}q_{2}\left( k_{1}Ar_{2}-0.5\right) }{2k_{1}\alpha ^{-1}\left( q_{1}^{2}+q_{2}^{2}\right) },\\ B_{41}^{n}= & {} I_{31}^{n}(I_{11}^{n}I_{21}^{n}-I_{12}^{n}I_{22}^{n})-I_{32}^{n}(I_{11}^{n}I_{22}^{n}+I_{12}^{n}I_{21}^{n}),~B_{42}^{n}\\= & {} I_{32}^{n}\left( I_{11}^{n}I_{21}^{n}-I_{12}^{n}I_{22}^{n}\right) \\&+I_{31}^{n}\left( I_{11}^{n}I_{22}^{n}+I_{12}^{n}I_{21}^{n}\right) ,\\ \bar{a_{11}}^{n}= & {} D_{11}^{n},~a_{11}^{'^{n}}=D_{12}^{n},~\bar{a_{4}}^{n}\\= & {} \bar{a}^{n},~\bar{b_{4}}^{n}=\bar{b}^{n},~\bar{c_{4}}^{n}=\bar{c}^{n},~\bar{d_{4}}^{n}\\= & {} \bar{d}^{n},~f_{4}^{n}=f^{n},~g_{4}^{n}=g^{n},~\bar{a_{12}}^{n}=D_{21}^{n},~a_{12}^{'^{n}}=D_{22}^{n},\\ a_{12}^{'^{n}}= & {} D_{22}^{n},~\bar{a_{13}}^{n}\\= & {} \frac{-2k_{1}Ar_{1}q_{1}\left( k_{1}Ar_{2}+0.5\right) +k_{1}^{2}A^{2}r_{1}^{2}q_{2}-q_{2}(k_{1}Ar_{2}+0.5)^{2}}{2k_{1}(q_{1}^{2}+q_{2}^{2})\left( \frac{1+\alpha H_{1}}{\alpha }\right) ^{2}},\\ a_{13}^{'^{n}}= & {} \frac{k_{1}^{2}A^{2}r_{1}^{2}q_{1}-(k_{1}Ar_{2}+0.5)^{2}q_{1}+2k_{1}Ar_{1}q_{2}(k_{1}Ar_{2}+0.5)}{2k_{1}(q_{1}^{2}+q_{2}^{2})\left( \frac{1+\alpha H_{1}}{\alpha }\right) ^{2}}\\ J_{11}^{n}= & {} \bar{a_{13}}^{n}\left( \bar{a_{11}}^{n}\bar{a_{12}}^{n}-a_{11}^{'^{n}}a_{12}^{'^{n}}\right) \\&-a_{13}^{'^{n}}\left( \bar{a_{11}}^{n}a_{12}^{'^{n}}+a_{11}^{'^{n}}\bar{a_{12}}^{n}\right) ,~J_{12}^{n}\\= & {} a_{13}^{'^{n}}\left( \bar{a_{11}}^{n}\bar{a_{12}}^{n}-a_{11}^{'^{n}}a_{12}^{'^{n}}\right) \\&+\bar{a_{13}}^{n}\left( \bar{a_{11}}^{n}a_{12}^{'^{n}}+a_{11}^{'^{n}}\bar{a_{12}}^{n}\right) ,\\ \bar{b_{12}}^{n}= & {} D_{31}^{n},~b_{12}^{'^{n}}=D_{32}^{n},~f_{5}^{n}\\= & {} -(k_{1}Ar_{2}+1)log\left( 1+\alpha H_{1}\right) \\&-k_{1}Ar_{2}log\left( \sqrt{4k_{1}^{2}\alpha ^{-2}(q_{1}^{2}+q_{2}^{2})}\right) \\&-k_{1}Ar_{1}\tan ^{-1}\left( -\frac{q_{1}}{q_{2}}\right) ,\\ g_{5}^{n}= & {} k_{1}Ar_{1}log\left( 1+\alpha H_{1}\right) \\&+k_{1}Ar_{1}log\left( \sqrt{4k_{1}^{2}\alpha ^{-2}\left( q_{1}^{2}+q_{2}^{2}\right) }\right) \\&-k_{1}Ar_{2}\tan ^{-1}\left( -\frac{q_{1}}{q_{2}}\right) ,~\bar{\gamma _{13}}^{n}\\= & {} {\text {e}}^{f_{5}^{n}}\cos g_{5}^{n},~\gamma _{13}^{'^{n}}={\text {e}}^{f_{5}^{n}}\sin g_{5}^{n},\\ \bar{b_{13}}^{n}= & {} -k_{1}A\alpha (r_{2}\bar{\gamma _{13}}^{n}+r_{1}\gamma _{13}^{'^{n}}),~b_{13}^{'^{n}}=k_{1}A\alpha (r_{1}\bar{\gamma _{13}}^{n}-r_{2}\gamma _{13}^{'^{n}}),~J_{21}^{n}\\= & {} \bar{b_{13}}^{n}\left( \bar{a_{11}}^{n}\bar{b_{12}}^{n}-a_{11}^{'^{n}}b_{12}^{'^{n}}\right) -b_{13}^{'^{n}}\left( \bar{a_{11}}^{n}b_{12}^{'^{n}}+a_{11}^{'^{n}}\bar{b_{12}}^{n}\right) ,\\ J_{22}^{n}= & {} b_{13}^{'^{n}}(\bar{a_{11}}^{n}\bar{b_{12}}^{n}-a_{11}^{'^{n}}b_{12}^{'^{n}})+\bar{b_{13}}^{n}(\bar{a_{11}}^{n}b_{12}^{'^{n}}+a_{11}^{'^{n}}\bar{b_{12}}^{n}),\\ \bar{c_{11}}^{n}= & {} k_{1}q_{1}{\text {e}}^{k_{1}q_{2}\left( \frac{1+\alpha H_{1}}{\alpha }\right) }\sin \left[ k_{1}q_{1}\left( \frac{1+\alpha H_{1}}{\alpha }\right) \right] \\&-k_{1}q_{2}{\text {e}}^{k_{1}q_{2}\left( \frac{1+\alpha H_{1}}{\alpha }\right) }\cos \left[ k_{1}q_{1}\left( \frac{1+\alpha H_{1}}{\alpha }\right) \right] ,\\ c_{11}^{'^{n}}= & {} k_{1}q_{1}{\text {e}}^{k_{1}q_{2}\left( \frac{1+\alpha H_{1}}{\alpha }\right) }\cos \left[ k_{1}q_{1}\left( \frac{1+\alpha H_{1}}{\alpha }\right) \right] \\&+k_{1}q_{2}{\text {e}}^{k_{1}q_{2}\left( \frac{1+\alpha H_{1}}{\alpha }\right) }\sin \left[ k_{1}q_{1}\left( \frac{1+\alpha H_{1}}{\alpha }\right) \right] ,\\ J_{31}^{n}= & {} \bar{b_{12}}^{n}(\bar{c_{11}}^{n}\bar{a_{12}}^{n}-c_{11}^{'^{n}}a_{12}^{'^{n}})-b_{12}^{'^{n}}(\bar{c_{11}}^{n}a_{12}^{'^{n}}+c_{11}^{'^{n}}\bar{a_{12}}^{n}),~J_{32}^{n}\\= & {} b_{12}^{'^{n}}\left( \bar{c_{11}}^{n}\bar{a_{12}}^{n}-c_{11}^{'^{n}}a_{12}^{'^{n}}\right) \\&+\bar{b_{12}}^{n}\left( \bar{c_{11}}^{n}a_{12}^{'^{n}}+c_{11}^{'^{n}}\bar{a_{12}}^{n}\right) ,\\ C_{11}^{n}= & {} J_{11}^{n}+J_{21}^{n}-J_{31}^{n},~C_{12}^{n}\\= & {} J_{12}^{n}+J_{22}^{n}-J_{32}^{n},~\bar{d_{11}}^{n}\\= & {} E_{11}^{n},~d_{11}^{'^{n}}=E_{12}^{n},~\bar{a_{5}}^{n}\\= & {} \bar{a_{1}}^{n},~\bar{b_{5}}^{n}=\bar{b_{1}}^{n},~\bar{c_{5}}^{n}=\bar{c_{1}}^{n},~\bar{d_{5}}^{n}=\bar{d_{1}}^{n},\\ f_{6}^{n}= & {} f_{1}^{n},~g_{6}^{n}=g_{1}^{n},~\bar{d_{12}}^{n}\\= & {} E_{21}^{n},~d_{12}^{'^{n}}=E_{22}^{n},~\bar{d_{13}}^{n}\\= & {} \frac{2k_{1}Ar_{1}q_{1}\left( k_{1}Ar_{2}-0.5\right) -k_{1}^{2}A^{2}r_{1}^{2}q_{2}+q_{2}\left( k_{1}Ar_{2}-0.5\right) ^{2}}{2k_{1}\left( q_{1}^{2}+q_{2}^{2}\right) \left( \frac{1+\alpha H_{1}}{\alpha }\right) ^{2}},\\ d_{13}^{'^{n}}= & {} \frac{-k_{1}^{2}A^{2}r_{1}^{2}q_{1}+\left( k_{1}Ar_{2}-0.5\right) ^{2}q_{1}-2k_{1}Ar_{1}q_{2}(k_{1}Ar_{2}-0.5)}{2k_{1}(q_{1}^{2}+q_{2}^{2})\left( \frac{1+\alpha H_{1}}{\alpha }\right) ^{2}},\\ L_{11}^{n}= & {} \bar{d_{13}}^{n}\left( \bar{d_{11}}^{n}\bar{d_{12}}^{n}-d_{11}^{'^{n}}d_{12}^{'^{n}}\right) \\&-d_{13}^{'^{n}}\left( \bar{d_{11}}^{n}d_{12}^{'^{n}}+d_{11}^{'^{n}}\bar{d_{12}}^{n}\right) ,~L_{12}^{n}\\= & {} d_{13}^{'^{n}}\left( \bar{d_{11}}^{n}\bar{d_{12}}^{n}-d_{11}^{'^{n}}d_{12}^{'^{n}}\right) +\bar{d_{13}}^{n}\left( \bar{d_{11}}^{n}d_{12}^{'^{n}}+d_{11}^{'^{n}}\bar{d_{12}}^{n}\right) ,\\ \bar{e_{12}}^{n}= & {} E_{31}^{n},~e_{12}^{'^{n}}=E_{32}^{n},~f_{7}^{n}\\= & {} \left( k_{1}Ar_{2}-1\right) log\left( 1+\alpha H_{1}\right) \\&+k_{1}Ar_{2}log\left( \sqrt{4k_{1}^{2}\alpha ^{-2}\left( q_{1}^{2}+q_{2}^{2}\right) }\right) +k_{1}Ar_{1}\tan ^{-1}\left( -\frac{q_{1}}{q_{2}}\right) ,\\ g_{7}^{n}= & {} -k_{1}Ar_{1}log\left( 1+\alpha H_{1}\right) -k_{1}Ar_{1}log\left( \sqrt{4k_{1}^{2}\alpha ^{-2}\left( q_{1}^{2}+q_{2}^{2}\right) }\right) \\&+k_{1}Ar_{2}\tan ^{-1}\left( -\frac{q_{1}}{q_{2}}\right) ,~\bar{\delta _{13}}^{n}\\= & {} {\text {e}}^{f_{7}^{n}}\cos g_{7}^{n},~\delta _{13}^{'^{n}}={\text {e}}^{f_{7}^{n}}\sin g_{7}^{n},\\ \bar{e_{13}}^{n}= & {} k_{1}A\alpha (r_{2}\bar{\delta _{13}}^{n}+r_{1}\delta _{13}^{'^{n}}),~e_{13}^{'^{n}}\\= & {} k_{1}A\alpha \left( -r_{1}\bar{\delta _{13}}^{n}+r_{2}\delta _{13}^{'^{n}}\right) ,~L_{21}^{n}\\= & {} \bar{e_{13}}^{n}\left( \bar{d_{11}}^{n}\bar{e_{12}}^{n}-d_{11}^{'^{n}}e_{12}^{'^{n}}\right) \\&-e_{13}^{'^{n}}\left( \bar{d_{11}}^{n}e_{12}^{'^{n}}+d_{11}^{'^{n}}\bar{e_{12}}^{n}\right) ,\\ L_{22}^{n}= & {} e_{13}^{'^{n}}\left( \bar{d_{11}}^{n}\bar{e_{12}}^{n}-d_{11}^{'^{n}}e_{12}^{'^{n}}\right) \\&+\bar{e_{13}}^{n}\left( \bar{d_{11}}^{n}e_{12}^{'^{n}}+d_{11}^{'^{n}}\bar{e_{12}}^{n}\right) ,\\ \bar{f_{11}}^{n}= & {} k_{1}q_{1}{\text {e}}^{-k_{1}q_{2}\left( \frac{1+\alpha H_{1}}{\alpha }\right) }\sin \left[ k_{1}q_{1}\left( \frac{1+\alpha H_{1}}{\alpha }\right) \right] \\&+k_{1}q_{2}{\text {e}}^{-k_{1}q_{2}\left( \frac{1+\alpha H_{1}}{\alpha }\right) }\cos \left[ k_{1}q_{1}\left( \frac{1+\alpha H_{1}}{\alpha }\right) \right] ,\\ f_{11}^{'^{n}}= & {} k_{1}q_{2}{\text {e}}^{-k_{1}q_{2}\left( \frac{1+\alpha H_{1}}{\alpha }\right) }\sin \left[ k_{1}q_{1}\left( \frac{1+\alpha H_{1}}{\alpha }\right) \right] \\&-k_{1}q_{1}{\text {e}}^{-k_{1}q_{2}\left( \frac{1+\alpha H_{1}}{\alpha }\right) }\cos \left[ k_{1}q_{1}\left( \frac{1+\alpha H_{1}}{\alpha }\right) \right],\\L_{31}^{n}= & {} \bar{e_{12}}^{n}\left( \bar{f_{11}}^{n}\bar{d_{12}}^{n}-f_{11}^{'^{n}}d_{12}^{'^{n}}\right) \\&-e_{12}^{'^{n}}\left( \bar{f_{11}}^{n}d_{12}^{'^{n}}+f_{11}^{'^{n}}\bar{d_{12}}^{n}\right) ,~L_{32}^{n}\\= & {} e_{12}^{'^{n}}\left( \bar{f_{11}}^{n}\bar{d_{12}}^{n}-f_{11}^{'^{n}}d_{12}^{'^{n}}\right) \\&+\bar{e_{12}}^{n}\left( \bar{f_{11}}^{n}d_{12}^{'^{n}}+f_{11}^{'^{n}}\bar{d_{12}}^{n}\right) , \end{aligned}$$
$$\begin{aligned} C_{21}^{n}= & {} L_{11}^{n}+L_{21}^{n}-L_{31}^{n},~C_{22}^{n}\\= & {} L_{12}^{n}+L_{22}^{n}-L_{32}^{n},~\bar{g_{11}}^{n}=F_{11}^{n},~g_{11}^{'^{n}}\\= & {} F_{12}^{n},~\bar{a_{6}}^{n}=\bar{a_{2}}^{n},~\bar{b_{6}}^{n}\\= & {} \bar{b_{2}}^{n},~\bar{c_{6}}^{n}=\bar{c_{2}}^{n},~\bar{d_{6}}^{n}=\bar{d_{2}}^{n},\\ f_{8}^{n}= & {} f_{2}^{n},~g_{8}^{n}=g_{2}^{n},~\bar{g_{12}}^{n}\\= & {} F_{21}^{n},~g_{12}^{'^{n}}=F_{22}^{n},~\bar{g_{13}}^{n}\\= & {} \frac{-2k_{1}Ar_{1}q_{1}\left( k_{1}Ar_{2}+0.5\right) +k_{1}^{2}A^{2}r_{1}^{2}q_{2} -\left( k_{1}Ar_{2}+0.5\right) ^{2}q_{2}}{2k_{1}\alpha ^{-2}\left( q_{1}^{2}+q_{2}^{2}\right) },\\ g_{13}^{'^{n}}= & {} \frac{k_{1}^{2}A^{2}r_{1}^{2}q_{1} -\left( k_{1}Ar_{2}+0.5\right) ^{2}q_{1}+2k_{1}Ar_{1}q_{2}\left( k_{1}Ar_{2}+0.5\right) }{2k_{1}\alpha ^{-2}\left( q_{1}^{2}+q_{2}^{2}\right) },\\ M_{11}^{n}= & {} \bar{g_{13}}^{n}\left( \bar{g_{11}}^{n}\bar{g_{12}}^{n}-g_{11}^{'^{n}}g_{12}^{'^{n}}\right) \\&-g_{13}^{'^{n}}\left( \bar{g_{11}}^{n}g_{12}^{'^{n}}+g_{11}^{'^{n}}\bar{g_{12}}^{n}\right) ,~M_{12}^{n}\\= & {} g_{13}^{'^{n}}\left( \bar{g_{11}}^{n}\bar{g_{12}}^{n}-g_{11}^{'^{n}}g_{12}^{'^{n}}\right) \\&+\bar{g_{13}}^{n}\left( \bar{g_{11}}^{n}g_{12}^{'^{n}}+g_{11}^{'^{n}}\bar{g_{12}}^{n}\right) ,\\ \bar{h_{12}}^{n}= & {} 1-\frac{2k_{1}Ar_{1}q_{1}\left( k_{1}Ar_{2}+0.5\right) -k_{1}^{2}A^{2}r_{1}^{2}q_{2}+\left( k_{1}Ar_{2}+0.5\right) ^{2}q_{2}}{2k_{1}\alpha ^{-1}\left( q_{1}^{2}+q_{2}^{2}\right) },\\ h_{12}^{'^{n}}= & {} \frac{-k_{1}^{2}A^{2}r_{1}^{2}q_{1} +\left( k_{1}Ar_{2}+0.5\right) ^{2}q_{1}-2k_{1}Ar_{1}q_{2}\left( k_{1}Ar_{2}+0.5\right) }{2k_{1}\alpha ^{-1}\left( q_{1}^{2}+q_{2}^{2}\right) },\\ f_{9}^{n}= & {} -k_{1}Ar_{2}log\left( \sqrt{4k_{1}^{2}\alpha ^{-2}\left( q_{1}^{2}+q_{2}^{2}\right) }\right) \\&-k_{1}Ar_{1}\tan ^{-1}\left( -\frac{q_{1}}{q_{2}}\right) ,~g_{9}^{n}\\= & {} k_{1}Ar_{1}log\left( \sqrt{4k_{1}^{2}\alpha ^{-2}\left( q_{1}^{2}+q_{2}^{2}\right) }\right) \\&-k_{1}Ar_{2}\tan ^{-1}\left( -\frac{q_{1}}{q_{2}}\right) ,\\ \bar{\eta _{13}}^{n}= & {} {\text {e}}^{f_{9}^{n}}\cos g_{9}^{n},~\eta _{13}^{'^{n}}\\= & {} {\text {e}}^{f_{9}^{n}}\sin g_{9}^{n},~\bar{h_{13}}^{n}\\= & {} -k_{1}A\alpha \left( r_{2}\bar{\eta _{13}}^{n}+r_{1}\eta _{13}^{'^{n}}\right) ,~h_{13}^{'^{n}}\\= & {} k_{1}A\alpha \left( r_{1}\bar{\eta _{13}}^{n}-r_{2}\eta _{13}^{'^{n}}\right) ,\\ M_{21}^{n}= & {} \bar{h_{13}}^{n}\left( \bar{g_{11}}^{n}\bar{h_{12}}^{n}-g_{11}^{'^{n}}h_{12}^{'^{n}}\right) \\&-h_{13}^{'^{n}}\left( \bar{g_{11}}^{n}h_{12}^{'^{n}}+g_{11}^{'^{n}}\bar{h_{12}}^{n}\right) ,~M_{22}^{n}\\= & {} h_{13}^{'^{n}}\left( \bar{g_{11}}^{n}\bar{h_{12}}^{n}-g_{11}^{'^{n}}h_{12}^{'^{n}}\right) \\&+\bar{h_{13}}^{n}\left( \bar{g_{11}}^{n}h_{12}^{'^{n}}+g_{11}^{'^{n}}\bar{h_{12}}^{n}\right) ,\\ \bar{j_{11}}^{n}= & {} -k_{1}q_{2}{\text {e}}^{k_{1}q_{2}\alpha ^{-1}}\cos \left( \frac{k_{1}q_{1}}{\alpha }\right) \\&+k_{1}q_{1}{\text {e}}^{k_{1}q_{2}\alpha ^{-1}}\sin \left( \frac{k_{1}q_{1}}{\alpha }\right) ,~j_{11}^{'^{n}}\\= & {} k_{1}q_{1}{\text {e}}^{k_{1}q_{2}\alpha ^{-1}}\cos \left( \frac{k_{1}q_{1}}{\alpha }\right) \\&+k_{1}q_{2}{\text {e}}^{k_{1}q_{2}\alpha ^{-1}}\sin \left( \frac{k_{1}q_{1}}{\alpha }\right) ,\\ M_{31}^{n}= & {} \bar{h_{12}}^{n}\left( \bar{j_{11}}^{n}\bar{g_{12}}^{n}-j_{11}^{'^{n}}g_{12}^{'^{n}}\right) \\&-h_{12}^{'^{n}}\left( \bar{j_{11}}^{n}g_{12}^{'^{n}}+j_{11}^{'^{n}}\bar{g_{12}}^{n}\right) ,~M_{32}^{n}\\= & {} h_{13}^{'^{n}}\left( \bar{j_{11}}^{n}\bar{g_{12}}^{n}-j_{11}^{'^{n}}g_{12}^{'^{n}}\right) \\&+\bar{h_{12}}^{n}\left( \bar{j_{11}}^{n}g_{12}^{'^{n}}+j_{11}^{'^{n}}\bar{g_{12}}^{n}\right) ,~~~~\\ C_{31}^{n}= & {} M_{11}^{n}+M_{21}^{n}-M_{31}^{n},~C_{32}^{n}\\= & {} M_{12}^{n}+M_{22}^{n}-M_{32}^{n},~\bar{l_{11}}^{n}\\= & {} I_{11}^{n},~l_{11}^{'^{n}}=I_{12}^{n},~\bar{a_{7}}^{n}=\bar{a_{3}}^{n},~\bar{b_{7}}^{n}\\= & {} \bar{b_{3}}^{n},~\bar{c_{7}}^{n}=\bar{c_{3}}^{n},~~~~~~~~~~~\\ \bar{d_{7}}^{n}= & {} \bar{d_{3}}^{n},~f_{10}^{n}=f_{3}^{n},~g_{10}^{n}\\= & {} g_{3}^{n},~\bar{l_{12}}^{n}=I_{21}^{n},~l_{12}^{'^{n}}=I_{22}^{n},~\bar{l_{13}}^{n}\\= & {} \frac{2k_{1}Ar_{1}q_{1}\left( k_{1}Ar_{2}-0.5\right) -k_{1}^{2}A^{2}r_{1}^{2}q_{2} +\left( k_{1}Ar_{2}-0.5\right) ^{2}q_{2}}{2k_{1}\alpha ^{-2}\left( q_{1}^{2}+q_{2}^{2}\right) },\\ l_{13}^{'^{n}}= & {} \frac{-k_{1}^{2}A^{2}r_{1}^{2}q_{1} +\left( k_{1}Ar_{2}-0.5\right) ^{2}q_{1}-2k_{1}Ar_{1}q_{2}\left( k_{1}Ar_{2}-0.5\right) }{2k_{1}\alpha ^{-2}\left( q_{1}^{2}+q_{2}^{2}\right) },~~~~~~~~~~~~~~~~~~\\ N_{11}^{n}= & {} \bar{l_{13}}^{n}\left( \bar{l_{11}}^{n}\bar{l_{12}}^{n}-l_{11}^{'^{n}}l_{12}^{'^{n}}\right) -l_{13}^{'^{n}}(\bar{l_{11}}^{n}l_{12}^{'^{n}}+l_{11}^{'^{n}}\bar{l_{12}}^{n}),~N_{12}^{n}\\= & {} l_{13}^{'^{n}}\left( \bar{l_{11}}^{n}\bar{l_{12}}^{n}-l_{11}^{'^{n}}l_{12}^{'^{n}}\right) \\&+\bar{l_{13}}^{n}\left( \bar{l_{11}}^{n}l_{12}^{'^{n}}+l_{11}^{'^{n}}\bar{l_{12}}^{n}\right) ,~~~~~~~~~~~~~~~~\\ \bar{m_{12}}^{n}= & {} I_{31}^{n},~m_{12}^{'^{n}}=I_{32}^{n},~f_{0}^{n}\\= & {} k_{1}Ar_{2}log\left( \sqrt{4k_{1}^{2}\alpha ^{-2}\left( q_{1}^{2}+q_{2}^{2}\right) }\right) \\&+k_{1}Ar_{1}\tan ^{-1}\left( -\frac{q_{1}}{q_{2}}\right) ,\\ g_{0}^{n}= & {} -k_{1}Ar_{1}log\left( \sqrt{4k_{1}^{2}\alpha ^{-2}\left( q_{1}^{2}+q_{2}^{2}\right) }\right) \\&+k_{1}Ar_{2}\tan ^{-1}\left( -\frac{q_{1}}{q_{2}}\right) ,\\ \bar{\xi _{13}}^{n}= & {} {\text {e}}^{f_{0}^{n}}\cos g_{0}^{n},~\xi _{13}^{'^{n}}\\= & {} {\text {e}}^{f_{0}^{n}}\sin g_{0}^{n},~\bar{m_{13}}^{n}=k_{1}A\alpha (r_{2}\bar{\xi _{13}}^{n}+r_{1}\xi _{13}^{'^{n}}),~m_{13}^{'^{n}}\\= & {} k_{1}A\alpha \left( -r_{1}\bar{\xi _{13}}^{n}+r_{2}\xi _{13}^{'^{n}}\right) ,\\ N_{21}^{n}= & {} \bar{m_{13}}^{n}\left( \bar{l_{11}}^{n}\bar{m_{12}}^{n}-l_{11}^{'^{n}}m_{12}^{'^{n}}\right) \\&-m_{13}^{'^{n}}(\bar{l_{11}}^{n}m_{12}^{'^{n}}+l_{11}^{'^{n}}\bar{m_{12}}^{n}),~N_{22}^{n}\\= & {} m_{13}^{'^{n}}\left( \bar{l_{11}}^{n}\bar{m_{12}}^{n}-l_{11}^{'^{n}}m_{12}^{'^{n}}\right) \\&+\bar{m_{13}}^{n}\left( \bar{l_{11}}^{n}m_{12}^{'^{n}}+l_{11}^{'^{n}}\bar{m_{12}}^{n}\right) ,\\ \bar{n_{11}}^{n}= & {} k_{1}q_{2}{\text {e}}^{-k_{1}q_{2}\alpha ^{-1}}\cos \left( \frac{k_{1}q_{1}}{\alpha }\right) \\&+k_{1}q_{1}{\text {e}}^{-k_{1}q_{2}\alpha ^{-1}}\sin \left( \frac{k_{1}q_{1}}{\alpha }\right) ,~~~~~~~~~~~~~~~~~\\ n_{11}^{'^{n}}= & {} -k_{1}q_{1}{\text {e}}^{-k_{1}q_{2}\alpha ^{-1}}\cos \left( \frac{k_{1}q_{1}}{\alpha }\right) \\&+k_{1}q_{2}{\text {e}}^{-k_{1}q_{2}\alpha ^{-1}}\sin \left( \frac{k_{1}q_{1}}{\alpha }\right) ,~~~~~~~~~~~~~~~~\\ N_{31}^{n}= & {} \bar{m_{12}}^{n}(\bar{n_{11}}^{n}\bar{l_{12}}^{n}-n_{11}^{'^{n}}l_{12}^{'^{n}})\\&-m_{12}^{'^{n}}(\bar{n_{11}}^{n}l_{12}^{'^{n}}+n_{11}^{'^{n}}\bar{l_{12}}^{n}),~N_{32}^{n}\\= & {} m_{13}^{'^{n}}(\bar{n_{11}}^{n}\bar{l_{12}}^{n}-n_{11}^{'^{n}}l_{12}^{'^{n}})\\&+\bar{m_{12}}^{n}(\bar{n_{11}}^{n}l_{12}^{'^{n}}+n_{11}^{'^{n}}\bar{l_{12}}^{n}),~~\\ C_{41}^{n}= & {} N_{11}^{n}+N_{21}^{n}-N_{31}^{n},~C_{42}^{n}=N_{12}^{n}+N_{22}^{n}-N_{32}^{n},\\ T_{11}^{n}= & {} \sqrt{\overline{M}}\left[ \alpha \left( B_{31}^{n}B_{41}^{n}-B_{32}^{n}B_{42}^{n}\right) \right. \\&\left. -\left( C_{31}^{n}B_{41}^{n}-C_{32}^{n}B_{42}^{n}\right) -\left( C_{41}^{n}B_{31}^{n}-C_{42}^{n}B_{32}^{n}\right) \right] ,\\ T_{12}^{n}= & {} \sqrt{\overline{M}}\left[ \alpha \left( B_{32}^{n}B_{41}^{n}+B_{31}^{n}B_{42}^{n}\right) \right. \\&\left. -\left( C_{32}^{n}B_{41}^{n}+C_{31}^{n}B_{42}^{n}\right) -\left( C_{42}^{n}B_{31}^{n}+C_{41}^{n}B_{32}^{n}\right) \right] ,~\\ T_{13}^{n}= & {} \left( -\zeta _{0}^{'}-\delta \bar{\zeta _{0}}\right) \left( B_{31}^{n}B_{41}^{n}-B_{32}^{n}B_{42}^{n}\right) \\&-\left( \bar{\zeta _{0}}-\delta \zeta _{0}^{'}\right) \left( B_{32}^{n}B_{41}^{n}+B_{31}^{n}B_{42}^{n}\right) ,\\ T_{14}^{n}= & {} \left( \bar{\zeta _{0}}-\delta \zeta _{0}^{'}\right) \left( B_{31}^{n}B_{41}^{n}-B_{32}^{n}B_{42}^{n}\right) \\&+\left( -\zeta _{0}^{'}-\delta \bar{\zeta _{0}}\right) \left( B_{32}^{n}B_{41}^{n}+B_{31}^{n}B_{42}^{n}\right) ,\\ T_{15}^{n}= & {} \frac{\tanh \left( \bar{\zeta _{0}}H_{2}\right) +\tan ^{2}\left( \zeta _{0}^{'}H_{2}\right) \tanh \left( \bar{\zeta _{0}}H_{2}\right) }{1+\tanh ^{2}\left( \bar{\zeta _{0}}H_{2}\right) \tan ^{2}\left( \zeta _{0}^{'}H_{2}\right) },~T_{16}^{n}\\= & {} \frac{\tan (\zeta _{0}^{'}H_{2})-\tan ^{2}\left( \zeta _{0}^{'}H_{2}\right) \tanh ^{2}\left( \bar{\zeta _{0}}H_{2}\right) }{1+\tanh ^{2}\left( \bar{\zeta _{0}}H_{2}\right) \tan ^{2}\left( \zeta _{0}^{'}H_{2}\right) },\\ T_{17}^{n}= & {} \frac{2\eta _{0}\omega (1+\gamma H_{2})}{\sqrt{\overline{M}}}(T_{13}^{n}T_{15}^{n}-T_{14}^{n}T_{16}^{n}),~T_{18}^{n}\\= & {} \frac{2\eta _{0}\omega (1+\gamma H_{2})}{\sqrt{\overline{M}}}(T_{14}^{n}T_{15}^{n}\\&+T_{13}^{n}T_{16}^{n}),~T_{19}^{n}=T_{11}^{n}-T_{17}^{n},~T_{20}^{n} =T_{12}^{n}-T_{18}^{n},~\\ T_{21}^{n}= & {} \sqrt{\overline{M}}\left( C_{41}^{n}B_{31}^{n}-C_{42}^{n}B_{32}^{n}\right. \\&\left. -C_{31}^{n}B_{41}^{n}+C_{32}^{n}B_{42}^{n}\right) ,~T_{22}^{n}\\= & {} \sqrt{\overline{M}}\left( C_{42}^{n}B_{31}^{n}+C_{41}^{n}B_{32}^{n}\right. \\&\left. -C_{32}^{n}B_{41}^{n}-C_{31}^{n}B_{42}^{n}\right) ,\\ T_{23}^{n}= & {} \overline{M}\left( 1+\alpha H_{1}\right) \left( B_{41}^{n}C_{11}^{n}-B_{42}^{n}C_{12}^{n}+B_{31}^{n}C_{21}^{n}-B_{32}^{n}C_{22}^{n}\right) \\&+\left( \mu _{3}\bar{\zeta _{3}}-0.5\alpha \overline{M}\right) \left( B_{11}^{n}B_{41}^{n}-B_{12}^{n}B_{42}^{n}\right. \\&\left. +B_{21}^{n}B_{31}^{n}-B_{22}^{n}B_{32}^{n}\right) ~\\&-\mu _{3}\zeta _{3}^{'}\left( B_{11}^{n}B_{42}^{n}+B_{12}^{n}B_{41}^{n}+B_{21}^{n}B_{32}^{n}+B_{22}^{n}B_{31}^{n}\right) ,\\ T_{24}^{n}= & {} \overline{M}(1+\alpha H_{1})\left( B_{42}^{n}C_{11}^{n}+B_{41}^{n}C_{12}^{n}\right. \\&\left. +B_{31}^{n}C_{22}^{n}+B_{32}^{n}C_{21}^{n}\right) \\&+\left( \mu _{3}\bar{\zeta _{3}}-0.5\alpha \overline{M}\right) \left( B_{11}^{n}B_{42}^{n}\right. \\&\left. +B_{12}^{n}B_{41}^{n}+B_{21}^{n}B_{32}^{n}+B_{22}^{n}B_{31}^{n}\right) ~\\&+\mu _{3}\zeta _{3}^{'}(B_{11}^{n}B_{41}^{n}-B_{12}^{n}B_{42}^{n}+B_{21}^{n}B_{31}^{n}-B_{22}^{n}B_{32}^{n}),\\ T_{25}^{n}= & {} \overline{M}(1+\alpha H_{1})\left( B_{41}^{n}C_{11}^{n}-B_{42}^{n}C_{12}^{n}-B_{31}^{n}C_{21}^{n}+B_{32}^{n}C_{22}^{n}\right) \\&+\left( \mu _{3}\bar{\zeta _{3}}-0.5\alpha \overline{M}\right) \left( B_{11}^{n}B_{41}^{n}-B_{12}^{n}B_{42}^{n}-B_{21}^{n}B_{31}^{n}+B_{22}^{n}B_{32}^{n}\right) ~\\&-\mu _{3}\zeta _{3}^{'}(B_{11}^{n}B_{42}^{n}+B_{12}^{n}B_{41}^{n}\\&-B_{21}^{n}B_{32}^{n}-B_{22}^{n}B_{31}^{n}),~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\ T_{26}^{n}= & {} \overline{M}(1+\alpha H_{1})(B_{42}^{n}C_{11}^{n}+B_{41}^{n}C_{12}^{n}\\&-B_{31}^{n}C_{22}^{n}-B_{32}^{n}C_{21}^{n})+(\mu _{3}\bar{\zeta _{3}}\\&-0.5\alpha \overline{M})(B_{11}^{n}B_{42}^{n}+B_{12}^{n}B_{41}^{n}-B_{21}^{n}B_{32}^{n}-B_{22}^{n}B_{31}^{n})~\\&+\mu _{3}\zeta _{3}^{'}\left( B_{11}^{n}B_{41}^{n}-B_{12}^{n}B_{42}^{n}-B_{21}^{n}B_{31}^{n}+B_{22}^{n}B_{32}^{n}\right) ,\\ n= & {} 0,1,2 \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Dutta, R. & Das, S. Love-Type Wave Propagation in an Inhomogeneous Cracked Porous Medium Loaded by Heterogeneous Viscous Liquid Layer. J. Vib. Eng. Technol. 9, 433–448 (2021). https://doi.org/10.1007/s42417-020-00237-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-020-00237-y

Keywords

Navigation