Skip to main content
Log in

A Self-adaptive Algorithm with Newton Raphson Method for Parameters Identification of Photovoltaic Modules and Array

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

The word’s demand for renewable energy has be rinsing incrementally. One of the solutions for the energy crisis is photovoltaic. However, the design and development of better performing photovoltaic cells and modules requires accurate extraction of their intrinsic parameters. Metaheuristic algorithms have been reported to be the best methods for obtaining accurate values of these intrinsic parameters. However, local convergence goes against the recently devised heuristic methods and inhibits them from producing optimal result. This paper proposes a hybrid method that is based on the Newton Raphson method and a self-adaptive algorithm called the Drone Squadron Optimisation. The latter is an artifact technique inspired by the simulation of a drone squadron from a command centre. It is proposed that this hybrid method can help extract the best intrinsic parameters of photovoltaic cell and module. This study also provides insights and clarification on the reported approaches that have been recently proposed to formulate the objective function. Further, this study also computes and compares the ten best recently published heuristics algorithms in the domain of photovoltaic estimation. The study’s results obtain point to the difference between the two formulations and the accuracy of the best formulation. The results obtained from the six case studies covered in this study present the combined performance of the Newton Raphson method and Drone Squadron Optimisation to extract the accurate parameters of a photovoltaic module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CBC :

The current best coordinates

CBOFV :

The current best coordinates objective function

D :

Dimension

ε :

Stopping criteria

E :

Solar irradiance

F (θ):

Objective function to minimize

I :

Cell output current (A)

I d, I d 1, I d 2 :

Diode currents (A)

I iext (θ):

Estimated current

I i :

Measured current (A)

I 0, I 01, I 02 :

Diode reverse saturation currents (μA)

I p :

Current through parallel resistor (A)

I ph :

Photoelectric current (A)

I sc :

Short-circuit current (A)

k:

Boltzman constant (J/K)

k i :

Temperature coefficient of Isc (A/K)

LB:

Lower bound

n, n 1, n 2 :

Diode ideality factors

N :

Number of the experimental I–V data pairs

N S :

Number of cells connected in series

OF :

Objective function

θ :

Vector of parameters

P :

Firmware perturbation

P acc :

Probability for the worst solution to be accepted

q :

Electron charge (C)

R P :

Parallel resistance (Ω)

R S :

Series resistance (Ω)

RMSE :

Root mean square error

STC :

Standard testing condition (1000 W/m2, 25 °C)

T :

Temperature (K)

TC :

Trial coordinates

TmOFV :

The team’s objective function

TmC :

The team’s coordinates

U (0, 1):

Random uniform distribution between 1 and 0

UB :

Upper bound

V :

Cell output voltage (V)

V d :

Voltage applied across the diode (V)

V i :

Measured voltage (V)

V mp :

Voltage at the maximum power point (V)

V oc :

Open-circuit voltage (V)

V t :

Thermal voltage (V)

ABC:

Artificial bee colony

ABSO:

Artificial bee swarm optimization

ABC-TRR:

Hybrid trust-region reflective algorithm

C-HCLPSO:

Chaotic heterogeneous comprehensive learning particle swarm optimizer

CAO:

Coyote optimization algorithm

CWOA:

Chaotic whale optimization algorithm

CPSO:

Chaos particle swarm optimization

CSO:

Cat swarm optimization

DE/WOA:

Hybrid differential evolution with whale optimization algorithm

DDM:

Double diode model

DSO:

Drone Squadron Optimization

EHA-NMS:

Hybrid adaptive Nelder-Mead simplex algorithm

ELPSO:

Enhanced leader particle swarm optimisation

ESCE-OBL:

Enhanced shuffled complex evolution algorithm improved by opposition-based learning

EVPS:

Enhanced vibrating particles system algorithm

FPSO:

Flexible particle swarm optimization

GOFPANM:

Hybrid flower pollination algorithm

HBCS:

Hybridizing cuckoo search algorithm

HFAPS:

Hybrid firefly and pattern search algorithms

IADE:

Improved adaptive differential evolution algorithm

IJAYA:

Improved Jaya

IMFO:

Improved moth-flame optimization

ISCA:

Opposition-based sine cosine algorithm

ISCE:

Improved shuffled complex evolution

ITLBO:

Improved teaching learning-based optimization

IWAO:

Improved whale optimization algorithm

MADE:

Memetic adaptive differential evolution

MLBSA:

Multiple learning backtracking search algorithm

MPSO:

Particle swarm optimisation with adaptive mutation

NoCuSa:

Nonhomogeneous cuckoo search algorithm

ORcr-IJADE:

Advanced onlooker-ranking-based adaptive differential evolution

PGJAYA:

Performance-guided JAYA

PV:

Photovoltaic

RcrIJADE:

Improved adaptive differential evolution with crossover rate repairing

SATLBO:

Self-adaptive teaching–learning-based optimization

SDA:

Successive discretization algorithm

SFO:

Sunflower optimization algorithm

SOS:

Symbiotic organisms search

Std:

Standard deviation

TLABC:

Teaching–learning-based artificial bee colony

tvACPSO:

Time-varying acceleration coefficients particle swarm optimisation

WDOWOAPSO:

Collaborative swarm intelligence

References

  1. Z.-F. Liu, L.-L. Li, M.-L. Tseng, M.K. Lim, Prediction short-term photovoltaic power using improved chicken swarm optimizer—extreme learning machine model. J. Clean. Prod. 248, 119272 (2020). https://doi.org/10.1016/j.jclepro.2019.119272

    Article  Google Scholar 

  2. P.J. Gnetchejo, S. Ndjakomo Essiane, P. Ele, R. Wamkeue, D. Mbadjoun Wapet, S. Perabi Ngoffe, Important notes on parameter estimation of solar photovoltaic cell. Energy Convers. Manag. 197, 111870 (2019). https://doi.org/10.1016/j.enconman.2019.111870

    Article  Google Scholar 

  3. G.-Q. Lin, L.-L. Li, M.-L. Tseng, H.-M. Liu, D.-D. Yuan, R.R. Tan, An improved moth-flame optimization algorithm for support vector machine prediction of photovoltaic power generation. J. Clean. Prod. 253, 119966 (2020). https://doi.org/10.1016/j.jclepro.2020.119966

    Article  Google Scholar 

  4. Z. Chen, Y. Chen, L. Wu, S. Cheng, P. Lin, L. You, Accurate modeling of photovoltaic modules using a 1-D deep residual network based on I–V characteristics. Energy Convers. Manag. 186, 168–187 (2019). https://doi.org/10.1016/j.enconman.2019.02.032

    Article  Google Scholar 

  5. P.J. Gnetchejo, S.N. Essiane, P. Ele, R. Wamkeue, D.M. Wapet, S.P. Ngoffe, Enhanced vibrating particles system algorithm for parameters estimation of photovoltaic system. JPEE 07(08), 1–26 (2019). https://doi.org/10.4236/jpee.2019.78001

    Article  Google Scholar 

  6. P.A. Kumari, P. Geethanjali, Parameter estimation for photovoltaic system under normal and partial shading conditions: a survey. Renew. Sustain. Energy Rev. 84, 1–11 (2018). https://doi.org/10.1016/j.rser.2017.10.051

    Article  Google Scholar 

  7. S. Lun et al., An explicit approximate I–V characteristic model of a solar cell based on padé approximants. Sol. Energy 92, 147–159 (2013). https://doi.org/10.1016/j.solener.2013.02.021

    Article  Google Scholar 

  8. A. Jain, A. Kapoor, Exact analytical solutions of the parameters of real solar cells using Lambert W-function. Sol. Energy Mater. Sol. Cells 81(2), 269–277 (2004). https://doi.org/10.1016/j.solmat.2003.11.018

    Article  CAS  Google Scholar 

  9. S. Lun, C. Du, T. Guo, S. Wang, J. Sang, J. Li, A new explicit I–V model of a solar cell based on Taylor’s series expansion. Sol. Energy 94, 221–232 (2013). https://doi.org/10.1016/j.solener.2013.04.013

    Article  Google Scholar 

  10. G. Petrone, G. Spagnuolo, Parameters identification of the single-diode model for amorphous photovoltaic panels, in 2015 International Conference on Clean Electrical Power (ICCEP) (Taormina, Italy, 2015), pp. 105–109. https://doi.org/10.1109/ICCEP.2015.7177608

  11. V. Lo Brano, G. Ciulla, An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data. Appl. Energy 111, 894–903 (2013). https://doi.org/10.1016/j.apenergy.2013.06.046

    Article  Google Scholar 

  12. A.K. Tossa, Y.M. Soro, Y. Azoumah, D. Yamegueu, A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions. Sol. Energy 110, 543–560 (2014). https://doi.org/10.1016/j.solener.2014.09.043

    Article  Google Scholar 

  13. J. Appelbaum, A. Peled, Parameters extraction of solar cells—a comparative examination of three methods. Sol. Energy Mater. Sol. Cells 122, 164–173 (2014). https://doi.org/10.1016/j.solmat.2013.11.011

    Article  CAS  Google Scholar 

  14. H. Chen, S. Jiao, M. Wang, A.A. Heidari, X. Zhao, Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts. J. Clean. Prod. 244, 118778 (2020). https://doi.org/10.1016/j.jclepro.2019.118778

    Article  Google Scholar 

  15. W. Gong, Z. Cai, Parameter extraction of solar cell models using repaired adaptive differential evolution. Sol. Energy 94, 209–220 (2013). https://doi.org/10.1016/j.solener.2013.05.007

    Article  Google Scholar 

  16. G. Petrone, M. Luna, G. La Tona, M. Di Piazza, G. Spagnuolo, Online identification of photovoltaic source parameters by using a genetic algorithm. Appl. Sci. 8(1), 9 (2017). https://doi.org/10.3390/app8010009

    Article  Google Scholar 

  17. A. Askarzadeh, A. Rezazadeh, Artificial bee swarm optimization algorithm for parameters identification of solar cell models. Appl. Energy 102, 943–949 (2013). https://doi.org/10.1016/j.apenergy.2012.09.052

    Article  Google Scholar 

  18. K. Yu, J.J. Liang, B.Y. Qu, X. Chen, H. Wang, Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Convers. Manag. 150, 742–753 (2017). https://doi.org/10.1016/j.enconman.2017.08.063

    Article  Google Scholar 

  19. K. Yu, X. Chen, X. Wang, Z. Wang, Parameters identification of photovoltaic models using self-adaptive teaching–learning-based optimization. Energy Convers. Manag. 145, 233–246 (2017). https://doi.org/10.1016/j.enconman.2017.04.054

    Article  Google Scholar 

  20. G. Xiong, J. Zhang, D. Shi, Y. He, Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Convers. Manag. 174, 388–405 (2018). https://doi.org/10.1016/j.enconman.2018.08.053

    Article  Google Scholar 

  21. X. Gao et al., Parameter extraction of solar cell models using improved shuffled complex evolution algorithm. Energy Convers. Manag. 157, 460–479 (2018). https://doi.org/10.1016/j.enconman.2017.12.033

    Article  Google Scholar 

  22. S. Xu, Y. Wang, Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm. Energy Convers. Manag. 144, 53–68 (2017). https://doi.org/10.1016/j.enconman.2017.04.042

    Article  Google Scholar 

  23. S. Li et al., Parameter extraction of photovoltaic models using an improved teaching–learning-based optimization. Energy Convers. Manag. 186, 293–305 (2019). https://doi.org/10.1016/j.enconman.2019.02.048

    Article  Google Scholar 

  24. X. Chen, K. Yu, Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters. Sol. Energy 180, 192–206 (2019). https://doi.org/10.1016/j.solener.2019.01.025

    Article  Google Scholar 

  25. H. Chen, S. Jiao, A.A. Heidari, M. Wang, X. Chen, X. Zhao, An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models. Energy Convers. Manag. 195, 927–942 (2019). https://doi.org/10.1016/j.enconman.2019.05.057

    Article  Google Scholar 

  26. L. Wu et al., Parameter extraction of photovoltaic models from measured I–V characteristics curves using a hybrid trust-region reflective algorithm. Appl. Energy 232, 36–53 (2018). https://doi.org/10.1016/j.apenergy.2018.09.161

    Article  Google Scholar 

  27. X. Chen, B. Xu, C. Mei, Y. Ding, K. Li, Teaching–learning-based artificial bee colony for solar photovoltaic parameter estimation. Appl. Energy 212, 1578–1588 (2018). https://doi.org/10.1016/j.apenergy.2017.12.115

    Article  Google Scholar 

  28. G. Xiong, J. Zhang, X. Yuan, D. Shi, Y. He, G. Yao, Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm. Sol. Energy 176, 742–761 (2018). https://doi.org/10.1016/j.solener.2018.10.050

    Article  Google Scholar 

  29. Y. Chen, Z. Chen, L. Wu, C. Long, P. Lin, S. Cheng, Parameter extraction of PV models using an enhanced shuffled complex evolution algorithm improved by opposition-based learning. Energy Proc. 158, 991–997 (2019). https://doi.org/10.1016/j.egypro.2019.01.242

    Article  Google Scholar 

  30. N. Muangkote, K. Sunat, S. Chiewchanwattana, S. Kaiwinit, An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models. Renew. Energy 134, 1129–1147 (2019). https://doi.org/10.1016/j.renene.2018.09.017

    Article  Google Scholar 

  31. L. Guo, Z. Meng, Y. Sun, L. Wang, Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm. Energy Convers. Manag. 108, 520–528 (2016). https://doi.org/10.1016/j.enconman.2015.11.041

    Article  Google Scholar 

  32. A.M. Beigi, A. Maroosi, Parameter identification for solar cells and module using a hybrid firefly and pattern search algorithms. Sol. Energy 171, 435–446 (2018). https://doi.org/10.1016/j.solener.2018.06.092

    Article  Google Scholar 

  33. H. Sheng et al., Parameters extraction of photovoltaic models using an improved moth-flame optimization. Energies 12(18), 3527 (2019). https://doi.org/10.3390/en12183527

    Article  Google Scholar 

  34. S. Li, W. Gong, X. Yan, C. Hu, D. Bai, L. Wang, Parameter estimation of photovoltaic models with memetic adaptive differential evolution. Sol. Energy 190, 465–474 (2019). https://doi.org/10.1016/j.solener.2019.08.022

    Article  Google Scholar 

  35. M.H. Qais, H.M. Hasanien, S. Alghuwainem, A.S. Nouh, Coyote optimization algorithm for parameters extraction of three-diode photovoltaic models of photovoltaic modules. Energy 187, 116001 (2019). https://doi.org/10.1016/j.energy.2019.116001

    Article  Google Scholar 

  36. K. Yu, J.J. Liang, B.Y. Qu, Z. Cheng, H. Wang, Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models. Appl. Energy 226, 408–422 (2018). https://doi.org/10.1016/j.apenergy.2018.06.010

    Article  Google Scholar 

  37. G. Xiong, J. Zhang, X. Yuan, D. Shi, Y. He, Application of symbiotic organisms search algorithm for parameter extraction of solar cell models. Appl. Sci. 8(11), 2155 (2018). https://doi.org/10.3390/app8112155

    Article  CAS  Google Scholar 

  38. D.T. Cotfas, A.M. Deaconu, P.A. Cotfas, Application of successive discretization algorithm for determining photovoltaic cells parameters. Energy Convers. Manag. 196, 545–556 (2019). https://doi.org/10.1016/j.enconman.2019.06.037

    Article  Google Scholar 

  39. Z. Chen, L. Wu, P. Lin, Y. Wu, S. Cheng, Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy. Appl. Energy 182, 47–57 (2016). https://doi.org/10.1016/j.apenergy.2016.08.083

    Article  CAS  Google Scholar 

  40. H.G.G. Nunes, J.A.N. Pombo, P.M.R. Bento, S.J.P.S. Mariano, M.R.A. Calado, Collaborative swarm intelligence to estimate PV parameters. Energy Convers. Manag. 185, 866–890 (2019). https://doi.org/10.1016/j.enconman.2019.02.003

    Article  Google Scholar 

  41. N.J. Cheung, X.-M. Ding, H.-B. Shen, A nonhomogeneous cuckoo search algorithm based on quantum mechanism for real parameter optimization. IEEE Trans. Cybern. 1, 12 (2016). https://doi.org/10.1109/TCYB.2016.2517140

    Article  Google Scholar 

  42. M.H. Qais, H.M. Hasanien, S. Alghuwainem, Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm. Appl. Energy 250, 109–117 (2019). https://doi.org/10.1016/j.apenergy.2019.05.013

    Article  CAS  Google Scholar 

  43. K. Yu, B. Qu, C. Yue, S. Ge, X. Chen, J. Liang, A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module. Appl. Energy 237, 241–257 (2019). https://doi.org/10.1016/j.apenergy.2019.01.008

    Article  Google Scholar 

  44. L.L. Jiang, D.L. Maskell, J.C. Patra, Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm. Appl. Energy 112, 185–193 (2013). https://doi.org/10.1016/j.apenergy.2013.06.004

    Article  Google Scholar 

  45. D. Yousri, D. Allam, M.B. Eteiba, P.N. Suganthan, Static and dynamic photovoltaic models’ parameters identification using chaotic heterogeneous comprehensive learning particle swarm optimizer variants. Energy Convers. Manag. 182, 546–563 (2019). https://doi.org/10.1016/j.enconman.2018.12.022

    Article  Google Scholar 

  46. A. Rezaee Jordehi, Enhanced leader particle swarm optimisation (ELPSO): an efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules. Sol. Energy 159, 78–87 (2018). https://doi.org/10.1016/j.solener.2017.10.063

    Article  CAS  Google Scholar 

  47. M. Merchaoui, A. Sakly, M.F. Mimouni, Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction. Energy Convers. Manag. 175, 151–163 (2018). https://doi.org/10.1016/j.enconman.2018.08.081

    Article  Google Scholar 

  48. A.R. Jordehi, Time varying acceleration coefficients particle swarm optimisation (TVACPSO): a new optimisation algorithm for estimating parameters of PV cells and modules. Energy Convers. Manag. 129, 262–274 (2016). https://doi.org/10.1016/j.enconman.2016.09.085

    Article  Google Scholar 

  49. P. J. Gnetchejo, S. Ndjakomo Essiane, P. Ele, R. Wamkeue, D. Mbadjoun Wapet, S. Perabi Ngoffe, Reply to comment on ‘important notes on parameter estimation of solar photovoltaic cell’, by Gnetchejo et al. [Energy Conversion and Management, https://doi.org/10.1016/j.enconman.2019.111870] . Energy Convers. Manag. 201, 112132 (2019). https://doi.org/10.1016/j.enconman.2019.112132

  50. V.V. de Melo, W. Banzhaf, Drone Squadron Optimization: a novel self-adaptive algorithm for global numerical optimization. Neural Comput. Appl. 30(10), 3117–3144 (2018). https://doi.org/10.1007/s00521-017-2881-3

    Article  Google Scholar 

  51. H.G.G. Nunes, J.A.N. Pombo, S.J.P.S. Mariano, M.R.A. Calado, J.A.M. Felippe de Souza, A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization. Appl. Energy 211, 774–791 (2018). https://doi.org/10.1016/j.apenergy.2017.11.078

    Article  Google Scholar 

  52. A. Hazra, S. Das, M. Basu, An efficient fault diagnosis method for PV systems following string current. J. Clean. Prod. 154, 220–232 (2017). https://doi.org/10.1016/j.jclepro.2017.03.214

    Article  Google Scholar 

  53. V. V. de Melo, A novel metaheuristic method for solving constrained engineering optimization problems: Drone Squadron Optimization. arXiv:1708.01368 [cs, math] (2017). Accessed December 05, 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Juvet Gnetchejo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnetchejo, P.J., Ndjakomo Essiane, S., Dadjé, A. et al. A Self-adaptive Algorithm with Newton Raphson Method for Parameters Identification of Photovoltaic Modules and Array. Trans. Electr. Electron. Mater. 22, 869–888 (2021). https://doi.org/10.1007/s42341-021-00312-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-021-00312-5

Keywords

Navigation