Skip to main content
Log in

Micromotor-derived composites for biomedicine delivery and other related purposes

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Biocompatible designed micromotor has attracted more and more concerns in the field of biomedicine due to their self-propulsion and delivery abilities. Such micromotors, mostly consisting of alkali earth metals, hydrogels, or other motile biomaterials, can effectively transform chemical energy into mechanical or kinetic energy to achieve the expected delivery of cargos to the sites of action. Except for conveying power, the modifiable surface and inner cavity of micromotors guarantee that their potential as versatile delivery systems for therapeutic agents. Here, this review generalizes the propelling mechanisms, composites, and shapes of micromotors. Besides, the application of micromotor-derived composites for biomedicine delivery and other versatile purposes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced with permission from Ref. [87]

Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ismagilov RF, Schwartz A, Bowden N, Whitesides GM (2002) Autonomous movement and self-assembly. Angew Chem Int Ed 41(4):652–654

    Google Scholar 

  2. Zhang D, Wang D, Li J, Xu X, Zhang H, Duan R, Song B, Zhang D, Dong B (2019) One-step synthesis of PCL/Mg Janus micromotor for precious metal ion sensing, removal and recycling. J Mater Sci 54(9):7322–7332

    Google Scholar 

  3. Gao W, Uygun A, Wang J (2012) Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media. J Am Chem Soc 134(2):897–900

    Google Scholar 

  4. Zhang L, Abbott JJ, Dong L, Kratochvil BE, Bell D, Nelson BJ (2009) Artificial bacterial flagella: fabrication and magnetic control. Appl Phys Lett 94(6):064107

    Google Scholar 

  5. Campuzano S, Orozco J, Kagan D, Guix M, Gao W, Sattayasamitsathit S, Claussen JC, Merkoçi A, Wang J (2012) Bacterial isolation by lectin-modified microengines. Nano Lett 12(1):396–401

    Google Scholar 

  6. Yu X, Li Y, Wu J, Ju H (2014) Motor-based autonomous microsensor for motion and counting immunoassay of cancer biomarker. Anal Chem 86(9):4501–4507

    Google Scholar 

  7. Hu C-MJ, Fang RH, Copp J, Luk BT, Zhang L (2013) A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol 8(5):336–340

    Google Scholar 

  8. Wu Z, Li J, de Ávila BE-F, Li T, Gao W, He Q, Zhang L, Wang J (2015) Water-powered cell-mimicking Janus micromotor. Adv Funct Mater 25(48):7497–7501

    Google Scholar 

  9. Wang W, Duan W, Ahmed S, Mallouk TE, Sen A (2013) Small power: autonomous nano-and micromotors propelled by self-generated gradients. Nano Today 8(5):531–554

    Google Scholar 

  10. Li J, de Ávila BE-F, Gao W, Zhang L, Wang J (2017) Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci Robot 2(4):eaam6431

    Google Scholar 

  11. Purcell EM (1977) Life at low Reynolds number. Am J Phys 45(1):3–11

    Google Scholar 

  12. Kagan D, Benchimol MJ, Claussen JC, Chuluun-Erdene E, Esener S, Wang J (2012) Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew Chem Int Ed 51(30):7519–7522

    Google Scholar 

  13. Xu H, Sanchez MM, Magdanz V, Schwarz L, Hebenstreit F, Schmidt OG (2017) Sperm-hybrid micromotor for drug delivery in the female reproductive tract. arXiv preprint arXiv:170308510

  14. Cundari TR, Gordon MS (1991) Principal resonance contributors to high-valent, transition-metal alkylidene complexes. J Am Chem Soc 113(14):5231–5243

    Google Scholar 

  15. Paxton WF, Baker PT, Kline TR, Wang Y, Mallouk TE, Sen A (2006) Catalytically induced electrokinetics for motors and micropumps. J Am Chem Soc 128(46):14881–14888

    Google Scholar 

  16. Wang Y, Hernandez RM, Bartlett DJ, Bingham JM, Kline TR, Sen A, Mallouk TE (2006) Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22(25):10451–10456

    Google Scholar 

  17. Li J, Rozen I, Wang J (2016) Rocket science at the nanoscale. ACS Nano 10(6):5619–5634

    Google Scholar 

  18. Moran JL, Posner JD (2017) Phoretic self-propulsion. Annu Rev Fluid Mech 49:511–540

    MathSciNet  MATH  Google Scholar 

  19. Sattayasamitsathit S, Kou H, Gao W, Thavarajah W, Kaufmann K, Zhang L, Wang J (2014) Fully loaded micromotors for combinatorial delivery and autonomous release of cargoes. Small 10(14):2830–2833

    Google Scholar 

  20. Karshalev E, de Ávila BE-F, Beltrán-Gastélum M, Angsantikul P, Tang S, Mundaca-Uribe R, Zhang F, Zhao J, Zhang L, Wang J (2018) Micromotor pills as a dynamic oral delivery platform. ACS Nano 12(8):8397–8405

    Google Scholar 

  21. Wang L, Zhu H, Shi Y, Ge Y, Feng X, Liu R, Li Y, Ma Y, Wang L (2018) Novel catalytic micromotor of porous zeolitic imidazolate framework-67 for precise drug delivery. Nanoscale 10(24):11384–11391

    Google Scholar 

  22. Wu Z, Wu Y, He W, Lin X, Sun J, He Q (2013) Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew Chem Int Ed 52(27):7000–7003

    Google Scholar 

  23. Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F, Pourazary A, Katzenberg A, Gao W, Shen Y, Wang J (2013) Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7(10):9232–9240

    Google Scholar 

  24. Sun Y, Liu Y, Song B, Zhang H, Duan R, Zhang D, Dong B (2019) A light-driven micromotor with complex motion behaviors for controlled release. Adv Mater Interfaces 6(4):1801965

    Google Scholar 

  25. Dong R, Hu Y, Wu Y, Gao W, Ren B, Wang Q, Cai Y (2017) Visible-light-driven BiOI-based Janus micromotor in pure water. J Am Chem Soc 139(5):1722–1725

    Google Scholar 

  26. Villa K, Manzanares Palenzuela CL, Zk Sofer, Matějková S, Pumera M (2018) Metal-free visible-light photoactivated C3N4 bubble-propelled tubular micromotors with inherent fluorescence and on/off capabilities. ACS Nano 12(12):12482–12491

    Google Scholar 

  27. Zhou D, Li YC, Xu P, McCool NS, Li L, Wang W, Mallouk TE (2016) Visible-light controlled catalytic Cu2O–Au micromotors. Nanoscale 9(1):75–78

    Google Scholar 

  28. Dong R, Cai Y, Yang Y, Gao W, Ren B (2018) Photocatalytic micro/nanomotors: from construction to applications. Acc Chem Res 51(9):1940–1947

    Google Scholar 

  29. Pacheco M, Jurado-Sánchez B, Escarpa A (2019) Visible-light-driven janus microvehicles in biological media. Angew Chem Int Ed 58(50):18017–18024

    Google Scholar 

  30. Gao W, Kagan D, Pak OS, Clawson C, Campuzano S, Chuluun-Erdene E, Shipton E, Fullerton EE, Zhang L, Lauga E (2012) Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small 8(3):460–467

    Google Scholar 

  31. Paxton WF, Kistler KC, Olmeda CC, Sen A, St. Angelo SK, Cao Y, Mallouk TE, Lammert PE, Crespi VH (2004) Catalytic nanomotors: autonomous movement of striped nanorods. J Am Chem Soc 126(41):13424–13431

    Google Scholar 

  32. Moran J, Wheat P, Posner J (2010) Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis. Phys Rev E 81(6):065302

    Google Scholar 

  33. Bayati P, Najafi A (2019) Electrophoresis of active Janus particles. J Chem Phys 150(23):234902

    Google Scholar 

  34. Bayati P, Najafi A (2016) Dynamics of two interacting active Janus particles. J Chem Phys 144(13):134901

    Google Scholar 

  35. Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier, Amsterdam

    Google Scholar 

  36. Russel WB, Russel W, Saville DA, Schowalter WR (1991) Colloidal dispersions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  37. Demirörs AF, Akan MT, Poloni E, Studart AR (2018) Active cargo transport with Janus colloidal shuttles using electric and magnetic fields. Soft Matter 14(23):4741–4749

    Google Scholar 

  38. Magdanz V, Medina-Sánchez M, Chen Y, Guix M, Schmidt OG (2015) How to improve spermbot performance. Adv Funct Mater 25(18):2763–2770

    Google Scholar 

  39. Felfoul O, Mohammadi M, Taherkhani S, De Lanauze D, Xu YZ, Loghin D, Essa S, Jancik S, Houle D, Lafleur M (2016) Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol 11(11):941

    Google Scholar 

  40. Servant A, Qiu F, Mazza M, Kostarelos K, Nelson BJ (2015) Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv Mater 27(19):2981–2988

    Google Scholar 

  41. Shao J, Xuan M, Zhang H, Lin X, Wu Z, He Q (2017) Chemotaxis-guided hybrid neutrophil micromotors for targeted drug transport. Angew Chem Int Ed 56(42):12935–12939

    Google Scholar 

  42. Ge Y, Wang T, Zheng M, Jiang Z, Wang S (2019) Controlled one-sided growth of Janus TiO2/MnO2 nanomotors. Nanotechnology 30(31):315702

    Google Scholar 

  43. Liu M, Liu L, Gao W, Su M, Ge Y, Shi L, Zhang H, Dong B, Li CY (2014) A micromotor based on polymer single crystals and nanoparticles: toward functional versatility. Nanoscale 6(15):8601–8605

    Google Scholar 

  44. Si T, Zou X, Wu Z, Li T, Wang X, Ivanovich KI, He Q (2019) A bubble-dragged catalytic polymer microrocket. Chem Asian J 14(14):2460–2464

    Google Scholar 

  45. Zhu H, Nawar S, Werner JG, Liu J, Huang G, Mei Y, Weitz DA, Solovev AA (2019) Hydrogel micromotors with catalyst-containing liquid core and shell. J Phys: Condens Matter 31(21):214004

    Google Scholar 

  46. Li J, Ji F, Ng DH, Liu J, Bing X, Wang P (2019) Bioinspired Pt-free molecularly imprinted hydrogel-based magnetic Janus micromotors for temperature-responsive recognition and adsorption of erythromycin in water. Chem Eng J 369:611–620

    Google Scholar 

  47. Wu Z, Lin X, Zou X, Sun J, He Q (2015) Biodegradable protein-based rockets for drug transportation and light-triggered release. ACS Appl Mater Interfaces 7(1):250–255

    Google Scholar 

  48. Xuan M, Wu Z, Shao J, Dai L, Si T, He Q (2016) Near infrared light-powered Janus mesoporous silica nanoparticle motors. J Am Chem Soc 138(20):6492–6497

    Google Scholar 

  49. Zhang F, Mundaca-Uribe R, Gong H, de Ávila BE-F, Beltrán-Gastélum M, Karshalev E, Nourhani A, Tong Y, Nguyen B, Gallot M (2019) A macrophage–magnesium hybrid biomotor: fabrication and characterization. Adv Mater 31(27):1901828

    Google Scholar 

  50. Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9(6):2243–2245

    Google Scholar 

  51. Zhang L, Peyer KE, Petit T, Kratochvil BE, Nelson BJ (2010) Motion control of artificial bacterial flagella. In: 10th IEEE international conference on nanotechnology. IEEE, pp 893–896

  52. Chen XZ, Hoop M, Shamsudhin N, Huang T, Özkale B, Li Q, Siringil E, Mushtaq F, Di Tizio L, Nelson BJ (2017) Hybrid magnetoelectric nanowires for nanorobotic applications: fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Adv Mater 29(8):1605458

    Google Scholar 

  53. Mou F, Chen C, Zhong Q, Yin Y, Ma H, Guan J (2014) Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly (N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS Appl Mater Interfaces 6(12):9897–9903

    Google Scholar 

  54. Yang P, Song X, Jia C, Chen H-S (2018) Metal-organic framework-derived hierarchical ZnO/NiO composites: morphology, microstructure and electrochemical performance. J Ind Eng Chem 62:250–257

    Google Scholar 

  55. Li J, Yu X, Xu M, Liu W, Sandraz E, Lan H, Wang J, Cohen SM (2017) Metal–organic frameworks as micromotors with tunable engines and brakes. J Am Chem Soc 139(2):611–614

    Google Scholar 

  56. Wang R, Guo W, Li X, Liu Z, Liu H, Ding S (2017) Highly efficient MOF-based self-propelled micromotors for water purification. RSC advances 7(67):42462–42467

    Google Scholar 

  57. Munerati M, Cortesi R, Ferrari D, Di Virgilio F, Nastruzzi C (1994) Macrophages loaded with doxorubicin by ATP-mediated permeabilization: potential carriers for antitumor therapy. Biochimica et Biophysica Acta (BBA)-Mol Cell Res 1224(2):269–276

    Google Scholar 

  58. Yang F, Cho S-W, Son SM, Bogatyrev SR, Singh D, Green JJ, Mei Y, Park S, Bhang SH, Kim B-S (2010) Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc Natl Acad Sci 107(8):3317–3322

    Google Scholar 

  59. Celiz AD, Smith JG, Langer R, Anderson DG, Winkler DA, Barrett DA, Davies MC, Young LE, Denning C, Alexander MR (2014) Materials for stem cell factories of the future. Nat Mater 13(6):570–579

    Google Scholar 

  60. Pierigè F, Serafini S, Rossi L, Magnani M (2008) Cell-based drug delivery. Adv Drug Deliv Rev 60(2):286–295

    Google Scholar 

  61. Gao W, Dong R, Thamphiwatana S, Li J, Gao W, Zhang L, Wang J (2015) Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9(1):117–123

    Google Scholar 

  62. Chen C, Karshalev E, Li J, Soto F, Castillo R, Campos I, Mou F, Guan J, Wang J (2016) Transient micromotors that disappear when no longer needed. ACS Nano 10(11):10389–10396

    Google Scholar 

  63. Liu L, Liu M, Su Y, Dong Y, Zhou W, Zhang L, Zhang H, Dong B, Chi L (2015) Tadpole-like artificial micromotor. Nanoscale 7(6):2276–2280

    Google Scholar 

  64. Manesh KM, Campuzano S, Gao W, Lobo-Castañón MJ, Shitanda I, Kiantaj K, Wang J (2013) Nanomotor-based biocatalytic patterning of helical metal microstructures. Nanoscale 5(4):1310–1314

    Google Scholar 

  65. Su M, Liu M, Liu L, Sun Y, Li M, Wang D, Zhang H, Dong B (2015) Shape-controlled fabrication of the polymer-based micromotor based on the polydimethylsiloxane template. Langmuir 31(43):11914–11920

    Google Scholar 

  66. Roberge PR (2000) Handbook of corrosion engineering. McGraw-Hill, New York, NY

    Google Scholar 

  67. Arqué X, Romero-Rivera A, Feixas F, Patiño T, Osuna S, Sánchez S (2019) Intrinsic enzymatic properties modulate the self-propulsion of micromotors. Nat Commun 10(1):1–12

    Google Scholar 

  68. Lai SK, Wang Y-Y, Hanes J (2009) Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 61(2):158–171

    Google Scholar 

  69. Celli JP, Turner BS, Afdhal NH, Ewoldt RH, McKinley GH, Bansil R, Erramilli S (2007) Rheology of gastric mucin exhibits a pH-dependent sol–gel transition. Biomacromolecules 8(5):1580–1586

    Google Scholar 

  70. Røn T, Patil NJ, Ajalloueian F, Rishikesan S, Zappone B, Chronakis IS, Lee S (2017) Gastric mucus and mucus like hydrogels: thin film lubricating properties at soft interfaces. Biointerphases 12(5):051001

    Google Scholar 

  71. Walker D, Käsdorf BT, Jeong H-H, Lieleg O, Fischer P (2015) Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci Adv 1(11):e1500501

    Google Scholar 

  72. Gu M, Yildiz H, Carrier R, Belfort G (2013) Discovery of low mucus adhesion surfaces. Acta Biomater 9(2):5201–5207

    Google Scholar 

  73. Lai SK, O’Hanlon DE, Harrold S, Man ST, Wang Y-Y, Cone R, Hanes J (2007) Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci 104(5):1482–1487

    Google Scholar 

  74. Macierzanka A, Rigby NM, Corfield AP, Wellner N, Böttger F, Mills EC, Mackie AR (2011) Adsorption of bile salts to particles allows penetration of intestinal mucus. Soft Matter 7(18):8077–8084

    Google Scholar 

  75. Li J, Thamphiwatana S, Liu W, de Ávila BE-F, Angsantikul P, Sandraz E, Wang J, Xu T, Soto F, Ramez V (2016) Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano 10(10):9536–9542

    Google Scholar 

  76. Li J, Angsantikul P, Liu W, de Ávila BE-F, Thamphiwatana S, Xu M, Sandraz E, Wang X, Delezuk J, Gao W (2017) Micromotors spontaneously neutralize gastric acid for pH-responsive payload release. Angew Chem Int Ed 56(8):2156–2161

    Google Scholar 

  77. Bennink RJ, de Jonge WJ, Symonds EL, van den Wijngaard RM, Spijkerboer AL, Benninga MA, Boeckxstaens GE (2003) Validation of gastric-emptying scintigraphy of solids and liquids in mice using dedicated animal pinhole scintigraphy. J Nucl Med 44(7):1099–1104

    Google Scholar 

  78. de Ávila BE-F, Angsantikul P, Li J, Gao W, Zhang L, Wang J (2018) Micromotors go in vivo: from test tubes to live animals. Adv Funct Mater 28(25):1705640

    Google Scholar 

  79. Moayyedi P, Leontiadis GI (2012) The risks of PPI therapy. Nat Rev Gastroenterol Hepatol 9(3):132–139

    Google Scholar 

  80. Xie Y, Bowe B, Li T, Xian H, Yan Y, Al-Aly Z (2017) Risk of death among users of proton pump inhibitors: a longitudinal observational cohort study of United States veterans. BMJ Open 7(6):e015735

    Google Scholar 

  81. Ho PM, Maddox TM, Wang L, Fihn SD, Jesse RL, Peterson ED, Rumsfeld JS (2009) Risk of adverse outcomes associated with concomitant use of clopidogrel and proton pump inhibitors following acute coronary syndrome. JAMA 301(9):937–944

    Google Scholar 

  82. de Ávila BE-F, Angsantikul P, Li J, Lopez-Ramirez MA, Ramírez-Herrera DE, Thamphiwatana S, Chen C, Delezuk J, Samakapiruk R, Ramez V (2017) Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat Commun 8(1):1–9

    Google Scholar 

  83. Shalaby WS (1995) Development of oral vaccines to stimulate mucosal and systemic immunity: barriers and novel strategies. Clin Immunol Immunopathol 74(2):127–134

    Google Scholar 

  84. Wei X, Beltrán-Gastélum M, Karshalev E, de Ávila BE-F, Zhou J, Ran D, Angsantikul P, Fang RH, Wang J, Zhang L (2019) Biomimetic micromotor enables active delivery of antigens for oral vaccination. Nano Lett 19(3):1914–1921

    Google Scholar 

  85. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Controlled Release 100(1):5–28

    Google Scholar 

  86. des Rieux A, Fievez V, Garinot M, Schneider Y-J, Préat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Controlled Release 116(1):1–27

    Google Scholar 

  87. de Ávila BE-F, Angell C, Soto F, Lopez-Ramirez MA, Báez DF, Xie S, Wang J, Chen Y (2016) Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano 10(5):4997–5005

    Google Scholar 

  88. Wang W, Li S, Mair L, Ahmed S, Huang TJ, Mallouk TE (2014) Acoustic propulsion of nanorod motors inside living cells. Angew Chem Int Ed 53(12):3201–3204

    Google Scholar 

  89. Hughes PM, Olejnik O, Chang-Lin J-E, Wilson CG (2005) Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev 57(14):2010–2032

    Google Scholar 

  90. Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58(11):1131–1135

    Google Scholar 

  91. Wu Z, Troll J, Jeong H-H, Wei Q, Stang M, Ziemssen F, Wang Z, Dong M, Schnichels S, Qiu T (2018) A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci Adv 4(11):eaat4388

    Google Scholar 

  92. Peters C, Hoop M, Pané S, Nelson BJ, Hierold C (2016) Degradable magnetic composites for minimally invasive interventions: device fabrication, targeted drug delivery, and cytotoxicity tests. Adv Mater 28(3):533–538

    Google Scholar 

  93. Qiu F, Fujita S, Mhanna R, Zhang L, Simona BR, Nelson BJ (2015) Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv Funct Mater 25(11):1666–1671

    Google Scholar 

  94. Xuan M, Shao J, Lin X, Dai L, He Q (2014) Self-propelled janus mesoporous silica nanomotors with sub-100 nm diameters for drug encapsulation and delivery. ChemPhysChem 15(11):2255–2260

    Google Scholar 

  95. Gao C, Lin Z, Wang D, Wu Z, Xie H, He Q (2019) Red blood cell-mimicking micromotor for active photodynamic cancer therapy. ACS Appl Mater Interfaces 11(26):23392–23400

    Google Scholar 

  96. Wu Z, Li T, Li J, Gao W, Xu T, Christianson C, Gao W, Galarnyk M, He Q, Zhang L (2014) Turning erythrocytes into functional micromotors. ACS Nano 8(12):12041–12048

    Google Scholar 

  97. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159–175

    Google Scholar 

  98. O’Brien XM, Loosley AJ, Oakley KE, Tang JX, Reichner JS (2014) Technical Advance: introducing a novel metric, directionality time, to quantify human neutrophil chemotaxis as a function of matrix composition and stiffness. J Leukoc Biol 95(6):993–1004

    Google Scholar 

  99. Freitas M, Porto G, Lima JL, Fernandes E (2008) Isolation and activation of human neutrophils in vitro. The importance of the anticoagulant used during blood collection. Clin Biochem 41(7–8):570–575

    Google Scholar 

  100. Sundararajan S, Lammert PE, Zudans AW, Crespi VH, Sen A (2008) Catalytic motors for transport of colloidal cargo. Nano Lett 8(5):1271–1276

    Google Scholar 

  101. Sundararajan S, Sengupta S, Ibele ME, Sen A (2010) Drop-off of colloidal cargo transported by catalytic Pt–Au nanomotors via photochemical stimuli. Small 6(14):1479–1482

    Google Scholar 

  102. Kagan D, Laocharoensuk R, Zimmerman M, Clawson C, Balasubramanian S, Kang D, Bishop D, Sattayasamitsathit S, Zhang L, Wang J (2010) Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small 6(23):2741–2747

    Google Scholar 

  103. Kagan D, Campuzano S, Balasubramanian S, Kuralay F, Flechsig G-U, Wang J (2011) Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Lett 11(5):2083–2087

    Google Scholar 

  104. Balasubramanian S, Kagan D, Jack Hu CM, Campuzano S, Lobo-Castañon MJ, Lim N, Kang DY, Zimmerman M, Zhang L, Wang J (2011) Micromachine-enabled capture and isolation of cancer cells in complex media. Angew Chem Int Ed 50(18):4161–4164

    Google Scholar 

  105. Morales-Narváez E, Guix M, Medina-Sánchez M, Mayorga-Martinez CC, Merkoçi A (2014) Micromotor enhanced microarray technology for protein detection. Small 10(13):2542–2548

    Google Scholar 

  106. Van Nguyen K, Minteer SD (2015) DNA-functionalized Pt nanoparticles as catalysts for chemically powered micromotors: toward signal-on motion-based DNA biosensor. Chem Commun 51(23):4782–4784

    Google Scholar 

  107. Jurado-Sánchez B, Pacheco M, Rojo J, Escarpa A (2017) Magnetocatalytic graphene quantum dots Janus micromotors for bacterial endotoxin detection. Angew Chem Int Ed 56(24):6957–6961

    Google Scholar 

  108. Orozco J, García-Gradilla V, D’Agostino M, Gao W, Cortes A, Wang J (2013) Artificial enzyme-powered microfish for water-quality testing. ACS Nano 7(1):818–824

    Google Scholar 

  109. Jurado-Sánchez B, Wang J (2018) Micromotors for environmental applications: a review. Environ Sci: Nano 5(7):1530–1544

    Google Scholar 

  110. Yang W, Li J, Xu Z, Yang J, Liu Y, Liu L (2019) A Eu-MOF/EDTA-NiAl-CLDH fluorescent micromotor for sensing and removal of Fe3+ from water. J Mater Chem C 7(33):10297–10308

    Google Scholar 

  111. Wu Z, Li T, Gao W, Xu T, Jurado-Sánchez B, Li J, Gao W, He Q, Zhang L, Wang J (2015) Cell-membrane-coated synthetic nanomotors for effective biodetoxification. Adv Funct Mater 25(25):3881–3887

    Google Scholar 

  112. de Ávila BE-F, Angsantikul P, Ramírez-Herrera DE, Soto F, Teymourian H, Dehaini D, Chen Y, Zhang L, Wang J (2018) Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Sci Robot 3(18):eaat0485

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51472115), the Jiangsu Provincial Graduate Research Innovation and Practice Project (KYCX17_0672, KYCX19_0645), the Research Program of Natural Science in Huaian (HAB201717), and the Jiangsu Overseas Research & Training Program for University Young Faculty and Presidents.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaole Qi or Zhenghong Wu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

This manuscript does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Huo, Z., Guo, J. et al. Micromotor-derived composites for biomedicine delivery and other related purposes. Bio-des. Manuf. 3, 133–147 (2020). https://doi.org/10.1007/s42242-020-00072-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-020-00072-w

Keywords

Navigation