Skip to main content
Log in

A comprehensive review of cavitation in valves: mechanical heart valves and control valves

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Valves are widely used in various working conditions for their flow control functions, and the cavitation inside valves has been investigated owing to its harm to the valve itself and the connecting downstream parts. This paper presents a comprehensive review of the progress that has been achieved in the past years about cavitation in valves including both mechanical heart valves and control valves. The review is divided in the following parts, namely the location where there is a high possibility of the occurrence of cavitation, the parameters that affect cavitation intensity, and the methods to minimize cavitation intensity. It should be noticed that although simulation has been widely used, advanced experiments are still needed in order to obtain accurate analysis of cavitation in valves and the cavitation model still needs to be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

MMHVs:

Monoleaflet mechanical heart valves

BMHVs:

Bileaflet mechanical heart valves

BS valve:

Björk–Shiley valve

CFD:

Computational fluid dynamics

CM valve:

CarboMedies valve

FSI:

Fluid–structure interaction

LES:

Large eddy simulation

MS:

Minisac

VCO:

Valve-covered orifice

CT:

Computed tomography

RANS:

Reynolds-averaged Navier–Stokes equations

SJM valve:

St. Jude Medical valve

References

  1. Zakaria MS, Ismail F, Tamagawa M, Aziz AFA, Wiriadidjaja S, Basri AA, Ahmad KA (2017) Review of numerical methods for simulation of mechanical heart valves and the potential for blood clotting. Med Biol Eng Comput 55(9):1519–1548

    Google Scholar 

  2. Jin ZJ, Chen FQ, Qian JY, Zhang M, Chen LL, Wang F, Fei Y (2016) Numerical analysis of flow and temperature characteristics in a high multi-stage pressure reducing valve for hydrogen refueling station. Int J Hydrogen Energy 41(12):5559–5570

    Google Scholar 

  3. Jin ZJ, Gao ZX, Chen MR, Qian JY (2018) Parametric study on Tesla valve with reverse flow for hydrogen decompression. Int J Hydrogen Energy 43(18):8888–8896

    Google Scholar 

  4. Qian JY, Wei L, Zhang M, Chen FQ, Chen LL, Jiang WK, Jin ZJ (2017) Flow rate analysis of compressible superheated steam through pressure reducing valves. Energy 135:650–658

    Google Scholar 

  5. Qian JY, Wei L, Jin ZJ, Wang JK, Zhang H (2014) CFD analysis on the dynamic flow characteristics of the pilot-control globe valve. Energy Convers Manag 87:220–226

    Google Scholar 

  6. Thorley ARD (1989) Check valve behavior under transient flow conditions: a state-of-the-art review. ASME J Fluids Eng 111(2):178–183

    Google Scholar 

  7. Petherick PM, Birk AM (1991) State-of-the-art review of pressure relief valve design, testing and modeling. J Press Vessel Technol 113(1):46–54

    Google Scholar 

  8. Abd Fatah AY, Mazlan SA, Koga T, Zamzuri H, Zeinali M, Imaduddin F (2015) A review of design and modeling of magnetorheological valve. Int J Mod Phys B 29(04):1530004

    Google Scholar 

  9. Luo XW, Bin JI, Tsujimoto Y (2016) A review of cavitation in hydraulic machinery. J Hydrodynam B 28(3):335–358

    Google Scholar 

  10. Kumar P, Saini RP (2010) Study of cavitation in hydro turbines—a review. Renew Sustain Energy Rev 14(1):374–383

    MathSciNet  Google Scholar 

  11. Gohil PP, Saini RP (2014) Coalesced effect of cavitation and silt erosion in hydro turbines—a review. Renew Sustain Energy Rev 33:280–289

    Google Scholar 

  12. Johansen P, Travis BR, Paulsen PK, Nygaard H, Hasenkam JM (2003) Cavitation caused by mechanical heart valve prostheses-a review. APMIS Suppl 109:108–112

    Google Scholar 

  13. Andersen TS, Johansen P, Christensen BO, Paulsen PK, Nygaard H, Hasenkam JM (2006) Intraoperative and postoperative evaluation of cavitation in mechanical heart valve patients. Ann Thorac Surg 81(1):34–41

    Google Scholar 

  14. Lee HS, Hwang SW, Yamamoto K (2003) Examination of cavitation-induced surface erosion pitting of a mechanical heart valve using a solenoid-actuated apparatus. KSME Int J 17(9):1339–1348

    Google Scholar 

  15. Lim WL, Chew YT, Low HT, Foo WL (2003) Cavitation phenomena in mechanical heart valves: the role of squeeze flow velocity and contact area on cavitation initiation between two impinging rods. J Biomech 36(9):1269–1280

    Google Scholar 

  16. Lo CW, Chen SF, Li CP, Lu PC (2010) Cavitation phenomena in mechanical heart valves: studied by using a physical impinging rod system. Ann Biomed Eng 38(10):3162–3172

    Google Scholar 

  17. Lo CW, Liu JS, Li CP, Lu PC, Hwang NH (2008) Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions. ASAIO J 54(2):163–171

    Google Scholar 

  18. Avrahami I, Rosenfeld M, Einav S, Eichler M, Reul H (2000) Can vortices in the flow across mechanical heart valves contribute to cavitation? Med Biol Eng Comput 38(1):93–97

    Google Scholar 

  19. Lukic B, Zapanta CM, Griffith KA, Weiss WJ (2005) Effect of the diastolic and systolic duration on valve cavitation in a pediatric pulsatile ventricular assist device. ASAIO J 51(5):546–550

    Google Scholar 

  20. Lee H, Akagawa E, Homma A, Tsukiya T, Tatsumi E, Taenaka Y (2007) Estimation of mechanical heart valve cavitation in a pneumatic ventricular assist device. J Artif Organs 10(3):181–185

    Google Scholar 

  21. Lee H, Homma A, Tatsumi E, Taenaka Y (2010) Observation of cavitation pits on mechanical heart valve surfaces in an artificial heart used in in vitro testing. J Artif Organs 13(1):17–23

    Google Scholar 

  22. Lee CS, Chandran KB, Chen LD (1996) Cavitation dynamics of medtronic hall mechanical heart valve prosthesis: fluid squeezing effect. J Biomech Eng 118:97–105

    Google Scholar 

  23. Bachmann C, Kini V, Deutsch S, Fontaine AA, Tarbell JM (2002) Mechanisms of cavitation and the formation of stable bubbles on the Bjork-Shiley Monostrut prosthetic heart valve. J Heart Valve Dis 11(1):105–113

    Google Scholar 

  24. Kini V, Bachmann C, Fontaine A, Deutsch S, Tarbell JM (2000) Flow visualization in mechanical heart valves: occluder rebound and cavitation potential. Ann Biomed Eng 28(4):431–441

    Google Scholar 

  25. Chandran KB, Aluri S (1997) Mechanical valve closing dynamics: relationship between velocity of closing, pressure transients, and cavitation initiation. Ann Biomed Eng 25(6):926–938

    Google Scholar 

  26. Zapanta CM, Stinebring DR, Sneckenberger DS, Deutsch S, Geselowitz DB, Tarbell JM, Snyder AJ, Rosenberg G, Weiss WJ, Pae WE, Pierce WS (1996) In vivo observation of cavitation on prosthetic heart valves. ASAIO J 42(5):M550–M555

    Google Scholar 

  27. Herbertson LH, Manning KB, Reddy V, Fontaine AA, Tarbell JM, Deutsch S (2005) The effect of dissolved carbon dioxide on cavitation intensity in mechanical heart valves. J Heart Valve Dis 14(6):835–842

    Google Scholar 

  28. Herbertson LH, Reddy V, Manning KB, Welz JP, Fontaine AA, Deutsch S (2006) Wavelet transforms in the analysis of mechanical heart valve cavitation. J Biomech Eng 128(2):217–222

    Google Scholar 

  29. Takiura K, Chinzei T, Abe Y, Isoyama T, Saito I, Ozeki T, Imachi K (2003) A new approach to detection of the cavitation on mechanical heart valves. ASAIO J 49(3):304–308

    Google Scholar 

  30. Takiura K, Chinzei T, Abe Y, Isoyama T, Saito I, Mochizuki S, Imachi K (2004) A temporal and spatial analysis of cavitation on mechanical heart valves by observing faint light emission. ASAIO J 50(3):285–290

    Google Scholar 

  31. Lee H, Taenaka Y (2006) Mechanism for cavitation phenomenon in mechanical heart valves. J Mech Sci Technol 20(8):1118–1124

    Google Scholar 

  32. Lee H, Tsukiya T, Homma A, Kamimura T, Tatsumi E, Taenaka Y, Kitamura S (2004) A study on the mechanism for cavitation in the mechanical heart valves with an electrohydraulic total artificial heart. JSME Int J Ser C 47(4):1043–1048

    Google Scholar 

  33. Eichler MJ, Reul HM (2004) Mechanical heart valve cavitation: valve specific parameters. Int J Artif Organs 27(10):855–867

    Google Scholar 

  34. Lee H, Homma A, Taenaka Y (2007) Hydrodynamic characteristics of bileaflet mechanical heart valves in an artificial heart: cavitation and closing velocity. Artif Organs 31(7):532–537

    Google Scholar 

  35. Li CP, Chen SF, Lo CW, Lu PC (2012) Role of vortices in cavitation formation in the flow at the closure of a bileaflet mitral mechanical heart valve. J Artif Organs 15(1):57–64

    Google Scholar 

  36. Mohammadi H, Klassen RJ, Wan WK (2008) A finite element model on effects of impact load and cavitation on fatigue crack propagation in mechanical bileaflet aortic heart valve. Proc IMechE Part H 222(7):1115–1125

    Google Scholar 

  37. Johansen P, Andersen TS, Hasenkam JM, Nygaard H, Paulsen PK (2014) Mechanical heart valve cavitation in patients with bileaflet valves. In: International conference of the IEEE engineering in medicine and biology society, pp 5655–5658

  38. Johansen P, Manning KB, Tarbell JM, Fontaine AA, Deutsch S, Nygaard H (2003) A new method for evaluation of cavitation near mechanical heart valves. J Biomech Eng 125:663–670

    Google Scholar 

  39. Dexter EU, Aluri S, Radcliffe RR, Zhu H, Carlson DD, Heilman TE, Chandran KB, Richenbacher WE (1999) In vivo demonstration of cavitation potential of a mechanical heart valve. ASAIO J 45(5):436–441

    Google Scholar 

  40. Wu C, Liu JS, Hwang NH (2005) Statistical correlation between transient pressure drop and cavitation at closure of a mechanical heart valve. ASAIO J 51(1):11–16

    Google Scholar 

  41. Yu AA, White JA, Hwang NHC (1998) Time-frequency analysis of transient pressure signals for a mechanical heart valve cavitation study. ASAIO J 44(5):M475–M479

    Google Scholar 

  42. Wu ZJ, Slonin JH, Hwang NHC (1996) Transient pressure signals in mechanical heart valve cavitation. ASAIO J 42(5):M555–M560

    Google Scholar 

  43. Adamkowski A, Lewandowski M (2014) Consideration of the cavitation characteristics of shut-off valves in numerical modelling of hydraulic transients in pipelines with column separation. Procedia Eng 70:1027–1036

    Google Scholar 

  44. Adamkowski A, Lewandowski M (2014) Cavitation characteristics of shutoff valves in numerical modeling of transients in pipelines with column separation. J Hydraul Eng 141(2):04014077

    Google Scholar 

  45. Couzinet A, Gros L, Pinho J, Chabane S, Pierrat D (2014) Numerical modeling of turbulent cavitation flows in safety relief valves. In: ASME pressure vessels piping conference, pp 1–10

  46. Hong SH, Kim KW (2016) The validity of the Reynolds equation in spool valve analysis considering cavitation. Friction 4(3):266–276

    Google Scholar 

  47. Longhitano M, Chighine M, Murrenhoff H (2017) Cavitation and turbulence modelling for valve flows: an application to a pilot stage of a servo valve. In: ASME/BATH symposium on fluid power motion control, pp 1–10

  48. Wang G, Cao S, Zuo Z, Zhao L (2001) Vortex structures and cavitation aspects around a hollow-jet valve. In: Proceedings, congress of the international association of hydraulic research, pp 623–629

  49. Guoyu W, Shujun LIU, Shintani M, Ikohagi T (1999) Study on cavitation damage characteristics around a hollow-jet valve. JSME Int J, Ser B 42(4):649–657

    Google Scholar 

  50. Liu X, He J, Zhao J, Long Z, Li W, Li B (2016) Biofluid flow through a throttle valve: a computational fluid dynamics study of cavitation. J Mech Med Biol 16(3):1650034

    Google Scholar 

  51. Li B, Li W, Jiao M, Wang B, Liu X (2017) Analysis of cavitation characteristics in throttle valve with different structure parameters. J Mech Med Biol 17(03):1750047

    Google Scholar 

  52. Washio S, Kikui S, Takahashi S (2010) Nucleation and subsequent cavitation in a hydraulic oil poppet valve. Proc IMechE Part C 224(4):947–958

    Google Scholar 

  53. Li S, Aung NZ, Zhang S, Cao J, Xue X (2013) Experimental and numerical investigation of cavitation phenomenon in flapper–nozzle pilot stage of an electrohydraulic servo-valve. Comput Fluids 88:590–598

    Google Scholar 

  54. Qu WS, Tan L, Cao SL, Xu Y, Huang J, Xu QH (2015) Experiment and numerical simulation of cavitation performance on a pressure-regulating valve with different openings. IOP Conf Ser Mater Sci Eng 72(4):042035

    Google Scholar 

  55. Saito S, Shibata M, Fukae H, Outa E (2007) Computational cavitation flows at inception and light stages on an axial-flow pump blade and in a cage-guided control valve. J Therm Sci 16(4):337–345

    Google Scholar 

  56. Lee WG, Reitz RD (2010) A numerical investigation of transient flow and cavitation within minisac and valve-covered orifice diesel injector nozzles. J Eng Gas Turbines Power 132(5):052802

    Google Scholar 

  57. Deng J, Pan D, Xie F, Shao X (2015) Numerical investigation of cavitation flow inside spool valve with large pressure drop. J Phys Conf Ser 656(1):012067

    Google Scholar 

  58. Zheng Z, Ou G, Jin H (2017) Numerical-experimental study on the erosion-cavitation wear of coal oil slurry valve. In ASME pressure vessels piping conference, pp 1–7

  59. Carlson B (2001) Avoiding cavitation in control valves. ASHRAE J 43(6):58–63

    Google Scholar 

  60. Singhal AK, Athavale MM, Li H, Jiang Y (2002) Mathematical basis and validation of the full cavitation model. ASME J Fluids Eng 124(3):617–624

    Google Scholar 

  61. Schnerr GH, Sauer J (2001) Physical and numerical modeling of unsteady cavitation dynamics. In: 4th international conference on multiphase flow, New Orleans, USA

  62. Zwart PJ, Gerber AG, Belamri T (2004) A two-phase flow model for predicting cavitation dynamics. In: 5th international conference on multiphase flow, Yokohama, Japan, May, vol 152

  63. Gholami H, Yaghoubi H, Alizadeh M (2014) Numerical analysis of cavitation phenomenon in a vaned ring-type needle valve. J Energy Eng 141(4):04014053

    Google Scholar 

  64. Du XW, Fu X, Yang HY (2009) The effect of pressure distribution on high speed cavitation flow inside throttling valve. In: Proceedings of the 7th international conference on fluid power transmission and control, pp 178–182

  65. Han M, Liu Y, Wu D, Zhao X, Tan H (2017) A numerical investigation in characteristics of flow force under cavitation state inside the water hydraulic poppet valves. Int J Heat Mass Transf 111:1–16

    Google Scholar 

  66. Nie S, Huang G, Li Y, Yang Y, Zhu Y (2006) Research on low cavitation in water hydraulic two-stage throttle poppet valve. Proc IMechE Part E 220(3):167–179

    Google Scholar 

  67. Gavaises M (2008) Flow in valve covered orifice nozzles with cylindrical and tapered holes and link to cavitation erosion and engine exhaust emissions. Int J Engine Res 9(6):435–447

    Google Scholar 

  68. Ko S, Song S (2015) Effects of design parameters on cavitation in a solenoid valve for an electric vehicle braking system and design optimization. J Mech Sci Technol 29(11):4757–4765

    Google Scholar 

  69. Lee MG, Lim CS, Han SH (2016) Shape design of the bottom plug used in a 3-way reversing valve to minimize the cavitation effect. Int J Precis Eng Manuf 17(3):401–406

    Google Scholar 

  70. Jin ZJ, Gao ZX, Qian JY, Wu Z, Sunden B (2018) A parametric study of hydrodynamic cavitation inside globe valves. ASME J Fluids Eng 140(3):031208

    Google Scholar 

  71. Liu Y, Ji X (2009) Simulation of cavitation in rotary valve of hydraulic power steering gear. Sci China Ser E Technol Sci 52(11):3142–3148

    MATH  Google Scholar 

  72. Zheng Z, Ou G, Ye H, Jin H (2016) Numerical analysis on cavitation erosion of a high pressure differential control valve. In: ASME pressure vessels piping conference, pp 1–6

  73. Ou GF, Xu J, Li WZ, Chen B (2015) Investigation on cavitation flow in pressure relief valve with high pressure differentials for coal liquefaction. Procedia Eng 130:125–134

    Google Scholar 

  74. Bernad S, Susan-Resiga R, Muntean S, Anton I (2007) Cavitation phenomena in hydraulic valves. Numerical modelling. Proc Rom Acad Ser A 8(2):1–10

    Google Scholar 

  75. Liang J, Luo X, Liu Y, Li X, Shi T (2016) A numerical investigation in effects of inlet pressure fluctuations on the flow and cavitation characteristics inside water hydraulic poppet valves. Int J Heat Mass Transf 103:684–700

    Google Scholar 

  76. Wang C, Li GX, Sun ZY, Wang L, Sun SP, Gu JJ, Wu XJ (2016) Effects of structure parameters on flow and cavitation characteristics within control valve of fuel injector for modern diesel engine. Energy Convers Manag 124:104–115

    Google Scholar 

  77. Gao H, Lin W, Tsukiji T (2006) Investigation of cavitation near the orifice of hydraulic valves. Proc IMechE Part G 220(4):253–265

    Google Scholar 

  78. Qian JY, Liu BZ, Jin ZJ, Wang JK, Zhang H (2016) Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements. J Zhejiang Univ Sci A 17(1):54–64

    Google Scholar 

  79. Yuzawa S, Okutsu R, Hashizume T (1998) Cavitation erosion features in industrial control valves at an inlet pressure of 20 MPa. JSME Int J, Ser B 41(4):1105–1113

    Google Scholar 

  80. Ou GF, Li WZ, Xiao DH, Zheng ZJ, Dou HS, Wang C (2015) Numerical investigation on cavitation in pressure relief valve for coal liquefaction. IOP Conf Ser Mater Sci Eng 72(4):042039

    Google Scholar 

  81. Liu B, Zhao J, Qian J (2017) Numerical analysis of cavitation erosion and particle erosion in butterfly valve. Eng Failure Anal 80:312–324

    Google Scholar 

  82. Zou J, Fu X, Du XW, Ruan XD, Ji H, Ryu S, Ochiai M (2008) Cavitation in a non-circular opening spool valve with U-grooves. Proc IMechE Part A 222(4):413–420

    Google Scholar 

  83. Okita K, Kajishima T (2000) G213 Numerical investigation of unsteady cavitating flow around a rectangular prism. prism (Fluid machinary-1). In: Proceedings of the fourth JSME-KSME thermal engineering conference, Kobe, Japan, vol 2

  84. Chen Y, Heister SD (1995) Two-phase modeling of cavitated flows. Comput Fluids 24(7):799–809

    MATH  Google Scholar 

  85. Pinho J, Rambaud P, Chabane S (2013) Experimental study of two-phase flow induced by cavitation through a safety relief valve. In: ASME pressure vessels piping conference, pp 1–10

  86. Amirante R, Distaso E, Tamburrano P (2014) Experimental and numerical analysis of cavitation in hydraulic proportional directional valves. Energy Convers Manag 87:208–219

    Google Scholar 

  87. Shirazi NT, Azizyan GR, Akbari GH (2012) CFD analysis of the ball valve performance in presence of cavitation. Life Sci J 9(4):1460–1467

    Google Scholar 

  88. Tabrizi AS, Asadi M, Xie G, Lorenzini G, Biserni C (2014) Computational fluid-dynamics-based analysis of a ball valve performance in the presence of cavitation. J Eng Thermophys 23(1):27–38

    Google Scholar 

  89. Ferrari J, Leutwyler Z (2008) Fluid flow force measurement under various cavitation state on a globe valve model. In: ASME pressure vessels piping conference, pp 157–165

  90. Yi D, Lu L, Zou J, Fu X (2015) Interactions between poppet vibration and cavitation in relief valve. Proc IMechE Part C 229(8):1447–1461

    Google Scholar 

  91. Caillaud S, Gibert RJ, Moussou P, Cohen J, Millet F (2006) Effects on pipe vibrations of cavitation in an orifice and in globe-style valves. In: ASME pressure vessels piping conference, pp 573–582

  92. Okita K, Miyamoto Y, Kataoka T, Takagi S, Kato H (2015) Mechanism of noise generation by cavitation in hydraulic relief valve. J Phys Conf Ser 656(1):012104

    Google Scholar 

  93. Osterman A, Hočevar M, Širok B, Dular M (2009) Characterization of incipient cavitation in axial valve by hydrophone and visualization. Exp Therm Fluid Sci 33(4):620–629

    Google Scholar 

  94. Brett G, Riveland M, Jensen TC, Heindel TJ (2011) Cavitation from a butterfly valve: comparing 3D simulations to 3D X-ray computed tomography flow visualization. In: ASME-JSME-KSME joint fluids engineering conference, January, pp 161–169

  95. Jazi AM, Rahimzadeh H (2009) Detecting cavitation in globe valves by two methods: characteristic diagrams and acoustic analysis. Appl Acoust 70(11):1440–1445

    Google Scholar 

  96. Jazi AM, Rahimzadeh H (2009) Waveform analysis of cavitation in a globe valve. Ultrasonics 49(6):577–582

    Google Scholar 

  97. Kudźma Z, Stosiak M (2015) Studies of flow and cavitation in hydraulic lift valve. Arch Civ Mech Eng 15(4):951–961

    Google Scholar 

  98. Lu L, Zou J, Fu X (2012) The acoustics of cavitation in spool valve with U-notches. Proc IMechE Part G 226(5):540–549

    Google Scholar 

  99. Ai-Fang YAN, Yang ZHAO (2016) Judgment criteria for cavitation based on jet flow field of V-type valve port. DEStech Trans Eng Technol Res 1–9

  100. Hympendahl O (2003) Simulation einer kavitierenden Strömung um moderne Propeller mit Feldmethoden, M.S. thesis, Technical University of Hamburg, Germany (in German)

  101. Aung NZ, Li S (2014) A numerical study of cavitation phenomenon in a flapper-nozzle pilot stage of an electrohydraulic servo-valve with an innovative flapper shape. Energy Convers Manag 77:31–39

    Google Scholar 

  102. Yang Q, Aung NZ, Li S (2015) Confirmation on the effectiveness of rectangle-shaped flapper in reducing cavitation in flapper–nozzle pilot valve. Energy Convers Manag 98:184–198

    Google Scholar 

  103. Liu YS, Huang Y, Li ZY (2002) Experimental investigation of flow and cavitation characteristics of a two-step throttle in water hydraulic valves. Proc IMechE Part 216(1):105–111

    Google Scholar 

  104. Chern MJ, Hsu PH, Cheng YJ, Tseng PY, Hu CM (2012) Numerical study on cavitation occurrence in globe valve. J Energy Eng 139(1):25–34

    Google Scholar 

  105. Gardellin D (1996) Minimize valve cavitation by proper system design. Chem Eng Prog 92(8):52–57

    Google Scholar 

  106. Ogawa K (2007) Cavitation noise reduction around a butterfly valve by semi-circular fins. In: ASME/JSME joint fluids engineering conference, pp 397–402

  107. Weijie S, Shuping C, Xiaohui L, Zuti Z, Yuquan Z (2017) Experimental research on the cavitation suppression in the water hydraulic throttle valve. J Press Vessel Technol 139(5):051302

    Google Scholar 

  108. Wilson J, Boelen EL (2003) Preventing cavitation requires proper design and operation of feed-water valves. Power Eng 107(11):94–98

    Google Scholar 

  109. Ogawa K, Hisada K (2002) Reduction of cavitation noise around a butterfly valve. ISA Tech Conf 477–484

  110. Feng J, Bole J, Jian C (2001) Study on cavitation characteristics of valve stand with drop step and lateral offsets. In: Proceedings of the congress-international association for hydraulic research, pp 639–644

  111. Kim DH, Kim HW, Ghal SH, Ha JS (2005) A design modification of the delivery valve and the constant pressure valve in a medium speed diesel engine fuel injection system for the prevention of cavitation damage and secondary injection. In: ASME international mechanical engineering congress and exposition, pp 237–243

  112. Xu Q, Xuan G (1998) The new methods for preventing cavitation of high-lift ship lock valves in hydro-power projects. Water Resour Eng 98:1757–1762

    Google Scholar 

  113. Trivedi V, Farah A, Harvel G (2013) Effects of cavitation damage on the hydraulic characteristics of a gate valve. In: ASME power conference, pp 1–7

  114. Guoyi P, Shimizu S (2013) Progress in numerical simulation of cavitating water jets. J Hydrodyn Ser B 25(4):502–509

    Google Scholar 

  115. Peng G, Shimizu S, Fujikawa S (2011) Numerical simulation of cavitating water jet by a compressible mixture flow method. J Fluid Sci Technol 6(4):499–509

    Google Scholar 

  116. Shi Y, Zhao Y, Yeo TJ, Hwang NH (2003) Numerical simulation of opening process in a bileaflet mechanical heart valve under pulsatile flow condition. J Heart Valve Dis 12(2):245–255

    Google Scholar 

  117. Li CP, Lu PC (2012) Numerical comparison of the closing dynamics of a new trileaflet and a bileaflet mechanical aortic heart valve. J Artif Organs 15(4):364–374

    Google Scholar 

  118. Choi CR, Kim CN (2009) Numerical analysis on the hemodynamics and leaflet dynamics in a bileaflet mechanical heart valve using a fluid-structure interaction method. ASAIO J 55(5):428–437

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China through Grant No. 51805470, the Fundamental Research Funds for the Central Universities through Grant No. 2018QNA4013, and the Youth Funds of the State Key Laboratory of Fluid Power and Mechatronic Systems (Zhejiang University) through Grant No. SKLoFP-QN-1801.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-jiang Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Jy., Gao, Zx., Hou, Cw. et al. A comprehensive review of cavitation in valves: mechanical heart valves and control valves. Bio-des. Manuf. 2, 119–136 (2019). https://doi.org/10.1007/s42242-019-00040-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-019-00040-z

Keywords

Navigation