Skip to main content

Advertisement

Log in

Anodic pine cone-like WO3/MoO3/TiO2 film with well-defined nanoflakes on Ti–6Al–7Nb implant

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

A pine cone-shaped tungsten−molybdenum−titanium oxides combinatorial coating was successfully grown on Ti–6Al–7Nb implant (Ti67) by a combined approach of RF/DC physical vapor deposition (PVD) and one-pot anodization. The results indicated that the surface morphology and the phase composition were significantly changed as a function of sputtering target and anodization period. Prior to anodization, PVD coating process resulted in the formation of crystalline mono- and multi-layer Mo and Mo/W thin films. After anodization for 60 min, a crystalline mixed oxide structure was formed as a result of oncoming electrochemical reactions. Compared to a single bare substrate and as-sputtered Mo/W multi-layer coating, the 60-min-anodized specimen had the highest hydrophilicity as well as Vickers hardness and showed adhesion strength of around 397 ± 1 MPa. Remarkably, the proposed modification is not only limited to Mo/W multi-layer coating, but can also be employed to a wide range of other transition metals to form a mixed oxide mono-layer on the surface of medical-grade titanium alloys for potential biomedical applications.

Pine cone-like WO3 /MoO3 /TiO2 nanoflakes biofilm modified Ti6Al7Nb implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fathi, M.H., Mortazavi, V.: Tantalum, niobium and titanium coatings for biocompatibility improvement of dental implants. Dent Res J. 4, 74–82 (2007)

    Google Scholar 

  2. Cremasco, A., Osório, W.R., Freire, C.M.A., et al.: Electrochemical corrosion behavior of a Ti–35Nb alloy for medical prostheses. Electrochim Acta. 53, 4867–4874 (2008)

    Article  Google Scholar 

  3. Niinomi, M.: Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4.6Zr. Biomaterials. 24, 2673–2683 (2003)

    Article  Google Scholar 

  4. Abdel-Hady, M., Hinoshita, K., Morinaga, M.: General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr Mater. 55, 477–480 (2006)

    Article  Google Scholar 

  5. Correa, D.R.N., Kuroda, P.A.B., Grandini, C.R., et al.: Tribocorrosion behavior of β-type Ti-15Zr-based alloys. Mater Lett. 179, 118–121 (2006)

    Article  Google Scholar 

  6. Stoica, E.D., Fedorov, F., Nicolae, M., et al.: Ti6Al7Nb surface modification by anodization in electrolytes containing HF. UPB Sci Bull Series B. 74, 277–288 (2012)

    Google Scholar 

  7. Rafieerad, A.R., Bushroa, A.R., Nasiri-Tabrizi, B., et al.: Toward improved mechanical, tribological, corrosion and in-vitro bioactivity properties of mixed oxide nanotubes on Ti–6Al–7Nb implant using multi-objective PSO. J Mech Behav Biomed Mater. 69, 1–18 (2017)

    Article  Google Scholar 

  8. Rafieerad, A.R., Bushroa, A.R., Nasiri-Tabrizi, B., et al.: GEP-based method to formulate adhesion strength and hardness of Nb PVD coated on Ti–6Al–7Nb aimed at developing mixed oxide nanotubular arrays. J Mech Behav Biomed Mater. 61, 182–196 (2016)

    Article  Google Scholar 

  9. Rafieerad, A.R., Bushroa, A.R., Nasiri-Tabrizi, B., et al.: Mechanical properties, corrosion behavior and in-vitro bioactivity of nanostructured Pd/PdO coating on Ti–6Al–7Nb implant. Mater Des. 103, 10–24 (2016)

    Article  Google Scholar 

  10. Daudt, N.F., Bram, M., Cysne Barbosa, A.P., et al.: Surface modification of highly porous titanium by plasma treatment. Mater Lett. 141, 194–197 (2015)

    Article  Google Scholar 

  11. Marx, B., Marx, C., Marx, R., Reisgen, U., Wirtz, D.C.: Bone cement adhesion on ceramic surfaces—surface activation of retention surfaces of knee endoprostheses by atmospheric pressure plasma vs. thermal surface treatment. J Adv Ceram. 5, 137–144 (2016)

    Article  Google Scholar 

  12. Jelikić-Stankov, M., Uskoković-Marković, S., Holclajtner-Antunović, I., et al.: Compounds of Mo, V and W in biochemistry and their biomedical activity. J Trace Elem Med Biol. 21, 8–16 (2007)

    Article  Google Scholar 

  13. Ribeiro, A.M., Flores-Sahagun, T.H., Paredes, R.C.: A perspective on molybdenum biocompatibility and antimicrobial activity for applications in implants. J Mater Sci. 51, 2806–2816 (2016)

    Article  Google Scholar 

  14. Qureshi, N., Patil, R., Shinde, M., et al.: Innovative biofilm inhibition and anti-microbial behavior of molybdenum sulfide nanostructures generated by microwave-assisted solvothermal route. Appl Nanosci. 5, 331–341 (2015)

    Article  Google Scholar 

  15. Mardare, C.C., Hassel, A.W.: Investigations on bactericidal properties of molybdenum−tungsten oxides combinatorial thin film material libraries. ACS Comb Sci. 16, 631–639 (2014)

    Article  Google Scholar 

  16. Saiae, E.: The orthorhombic phase of WO3. Acta Cryst. B33, 574–577 (1977)

    Google Scholar 

  17. He, T., Yao, J.: Photochromism of molybdenum oxide. J Photochem Photobiol C. 4, 125–143 (2003)

    Article  Google Scholar 

  18. Hanaor, D.A.H., Sorrell, C.C.: Review of the anatase to rutile phase transformation. J Mater Sci. 46, 855–874 (2011)

    Article  Google Scholar 

  19. Nasiri-Tabrizi, B., Pingguan-Murphy, B., Basirun, W.J., Baradaran, S.: Crystallization behavior of tantalum and chlorine co-substituted hydroxyapatite nanopowders. J Ind Eng Chem. 33, 316–325 (2016)

    Article  Google Scholar 

  20. Rafieerad, A.R., Bushroa, A.R., Nasiri-Tabrizi, B., et al.: Vertically oriented ZrO2-TiO2-Nb2O5-Al2O3 mixed nanopatterned bioceramics on Ti6Al7Nb implant assessed by laser spallation technique. J Alloys Compd. 721, 456–475 (2017)

    Article  Google Scholar 

  21. Liang, W., Zhu, L., Li, W., Liu, H.: Facile fabrication of a flower-like CuO/Cu(OH)2 nanorod film with tunable wetting transition and excellent stability. RSC Adv. 5, 38100–38110 (2015)

    Article  Google Scholar 

  22. Ng, C., Ye, C., Ng, Y.H., Amal, R.: Flower-shaped tungsten oxide with inorganic fullerene-like structure: synthesis and characterization. Cryst Growth Des. 10, 3794–3801 (2010)

    Article  Google Scholar 

  23. Wang, C., Wang, M., Xie, K., et al.: Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization. Nanotechnology. 22, 305607 (2011)

    Article  Google Scholar 

  24. Shirdar, M.R., Izman, S., Taheri, M.M., et al.: Effect of post-treatment techniques on corrosion and wettability of hydroxyapatite-coated Co–Cr–Mo alloy. Arab J Sci Eng. 40, 1197–1203 (2015)

    Article  Google Scholar 

  25. Rupp, F., Gittens, R.A., Scheideler, L., Marmur, A., Boyan, B.D., Schwartz, Z., Geis-Gerstorfer, J.: A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomater. 10, 2894–2906 (2014)

    Article  Google Scholar 

  26. Schwarz, F., Ferrari, D., Herten, M., Mihatovic, I., Wieland, M., Sager, M., Becker, J.: Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at nonsubmerged titanium implants: an immunohistochemical study in dogs. J Periodontol. 78, 2171–2184 (2007)

    Article  Google Scholar 

  27. Junker, R., Dimakis, A., Thoneick, M., Jansen, J.A.: Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res. 20, 185–206 (2009)

    Article  Google Scholar 

  28. Sandhyarani, M., Rameshbabu, N., Venkateswarlu, K., Rama, K.L.: Fabrication, characterization and in-vitro evaluation of nanostructured zirconia/hydroxyapatite composite film on zirconium. Surf Coat Technol. 238, 58–67 (2014)

    Article  Google Scholar 

  29. Sharifahmadian, O., Salimijazi, H.R., Fathi, M.H., et al.: Relationship between surface properties and antibacterial behavior of wire arc spray copper coatings. Surf Coat Technol. 233, 74–79 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of Malaya for providing necessary resources and facilities for this study. The authors are also grateful to Research Affairs of Islamic Azad University, Najafabad Branch for supporting of this research.

Funding information

This project was funded by UMRG grant number RP035A-15AET and UM postgraduate research grant (PPP) PG130-2015B.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. R. Bushroa or B. Nasiri-Tabrizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafieerad, A.R., Bushroa, A.R., Nasiri-Tabrizi, B. et al. Anodic pine cone-like WO3/MoO3/TiO2 film with well-defined nanoflakes on Ti–6Al–7Nb implant. J Aust Ceram Soc 54, 129–137 (2018). https://doi.org/10.1007/s41779-017-0134-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-017-0134-7

Keywords

Navigation