Skip to main content

Advertisement

Log in

Glacitectonic composite ridge systems and surge-type glaciers: an updated correlation based on Svalbard, Norway

  • Original Article
  • Published:
arktos

Abstract

Glacitectonic composite ridge systems are found at the margins of a number of surge-type glaciers globally. On the High-Arctic archipelago of Svalbard, the pioneering work of Croot (Glaciotectonics: forms and processes. Balkema, Amsterdam, 1988) highlighted the coincidence between composite ridge systems and surge-type glaciers on the island of Spitsbergen. These observations have contributed significantly to our understanding of the links between glacier surges and the landforms they produce. We update this work and expand it to the whole archipelago using the Norwegian Polar Institute’s TopoSvalbard aerial photograph archive to identify 50 composite ridge systems. These are found on all four of the largest islands: Spitsbergen, Nordaustlandet, Edgeøya and Barentsøya, and at the margins of both tidewater and land-terminating glaciers. Of the 50 composite ridge systems, 49 are associated with glaciers that have either been documented as surge-type or contain indicative geomorphological evidence of surging in the form of crevasse-squeeze ridge (CSR) networks. This provides further support for the established link between composite ridge systems and surging. Based on the proportion of glaciers that are documented as being of surge-type and those that display indicative evidence of surging (but have not been observed to surge), we conclude that at least 32.6% of all glaciers in Svalbard surge or are likely to have surged. This study contributes to the understanding of the links between glacier surging and specific landforms/landform assemblages (composite ridge systems and CSR networks), which has applications in other modern glacial environments and at the margins of former ice masses in palaeoglaciological settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aber JS, Croot DG, Fenton MM (1989) Glaciotectonic landforms and structures. Kluwer, Dordrecht

    Book  Google Scholar 

  2. Alley RB, Cuffey KM, Evenson EB, Strasser JC, Lawson DE, Larson GJ (1997) How glaciers entrain and transport basal sediment: physical constraints. Quat Sci Rev 16(9):1017–1038

    Article  Google Scholar 

  3. Bakker MA, van der Meer JJM (2003) Structure of a Pleistocene push moraine revealed by GPR: the eastern Veluwe Ridge, The Netherlands. Geol Soc Lond Spec Publ 211(1):143–151

    Article  Google Scholar 

  4. Benediktsson ÍÖ, Möller P, Ingólfsson Ó, van der Meer JJM, Kjær KH, Krüger J (2008) Instantaneous end moraine and sediment wedge formation during the 1890 glacier surge of Brúarjökull, Iceland. Quat Sci Rev 27(3):209–234

    Article  Google Scholar 

  5. Benediktsson ÍÖ, Ingólfsson Ó, Schomacker A, Kjær KH (2009) Formation of submarginal and proglacial end moraines: implications of ice-flow mechanism during the 1963-64 surge of Brúarjökull, Iceland. Boreas 38:440–457

    Article  Google Scholar 

  6. Benediktsson ÍÖ, Schomacker A, Lokrantz H, Ingólfsson Ó (2010) The 1890 surge end moraine at Eyjabakkajökull, Iceland: a re-assessment of a classic glaciotectonic locality. Quat Sci Rev 29:484–506

    Article  Google Scholar 

  7. Benediktsson ÍÖ, Schomacker A, Johnson MD, Geiger AJ, Ingólfsson Ó, Guðmundsdóttir ER (2015) Architecture and structural evolution of an early Little Ice Age terminal moraine at the surge-type glacier Múlajökull, Iceland. J Geophys Res: Earth Surf 120(9):1895–1910

    Article  Google Scholar 

  8. Benn DI, Clapperton CM (2000) Pleistocene glacitectonic landforms and sediments around central Magellan Strait, southernmost Chile: evidence for fast outlet glaciers with cold-based margins. Quat Sci Rev 19(6):591–612

    Article  Google Scholar 

  9. Bennett MR (2001) The morphology, structural evolution and significance of push moraines. Earth Sci Rev 53:197–236

    Article  Google Scholar 

  10. Bennett MR, Hambrey MJ, Huddart D, Glasser NF, Crawford K (1999) The landform and sediment assemblage produced by a tidewater glacier surge in Kongsfjorden, Svalbard. Quat Sci Rev 18(10):1213–1246

    Article  Google Scholar 

  11. Błaszczyk M, Jania JA, Hagen JO (2009) Tidewater glaciers of Svalbard: recent changes and estimates of calving fluxes. Polish Polar Res 30(2):85–142

    Google Scholar 

  12. Boston CM, Evans DJA, Ó Cofaigh C (2010) Styles of till deposition at the margin of the Last Glacial Maximum North Sea lobe of the British-Irish Ice Sheet: an assessment based on geochemical properties of glacigenic deposits in eastern England. Quat Sci Rev 29(23):3184–3211

    Article  Google Scholar 

  13. Boulton GS, Van der Meer JJM, Hart JK, Beets DJ, Ruegg GHJ, van der Wateren FM, Jarvis J (1996) Till and moraine emplacement in a deforming bed surge—an example from a marine environment. Quat Sci Rev 15(10):961–987

    Article  Google Scholar 

  14. Boulton GS, van der Meer JJM, Beets DJ, Hart JK, Ruegg GHJ (1999) The sedimentary and structural evolution of a recent push moraine complex: Holmstrømbreen, Spitsbergen. Quat Sci Rev 18:339–371

    Article  Google Scholar 

  15. Christoffersen P, Piotrowski JA, Larsen NK (2005) Basal processes beneath an Arctic glacier and their geomorphic imprint after a surge, Elisebreen, Svalbard. Quat Res 64(2):125–137

    Article  Google Scholar 

  16. Clayton L, Teller J, Attig J (1985) Surging of the southwestern part of the Laurentide Ice Sheet. Boreas 14(3):235–241

    Article  Google Scholar 

  17. Copland L, Sharp MJ, Dowdeswell JA (2003) The distribution and flow characteristics of surge-type glaciers in the Canadian High Arctic. Ann Glaciol 36(1):73–81

    Article  Google Scholar 

  18. Croot DG (1988) Glaciotectonics and surging glaciers: a correlation based on Vestspitsbergen, Svalbard, Norway. In: Croot DG (ed) Glaciotectonics: forms and processes. Balkema, Amsterdam, pp 49–62

    Google Scholar 

  19. Croot DG (1988) Morphological, structural and mechanical analysis of neoglacial ice-pushed ridges in Iceland. In: Croot DG (ed) Glaciotectonics: forms and processes. Balkema, Amsterdam, pp 33–47

    Google Scholar 

  20. Darvill CM, Stokes CR, Bentley MJ, Evans DJA, Lovell H (2016) Dynamics of former ice lobes of the southernmost Patagonian Ice Sheet based on a glacial landsystems approach. J Quat Sci. doi:10.1002/jqs.2890

    Google Scholar 

  21. Davies BJ, Roberts DH, O´Cofaigh C, Bridgland DR, Riding JB, Phillips ER, Teasdale DA (2009) Interlobate ice-sheet dynamics during the Last Glacial Maximum at Whitburn Bay, County Durham, England. Boreas 38:555–578

    Article  Google Scholar 

  22. Dowdeswell JA, Benham TJ (2003) A surge of Perseibreen, Svalbard, examined using aerial photography and ASTER high resolution satellite imagery. Polar Res 22(2):373–383

    Article  Google Scholar 

  23. Dowdeswell JA, Hamilton GS, Hagen JO (1991) The duration of the active phase on surge-type glaciers: contrasts between Svalbard and other regions. J Glaciol 37(127):388–400

    Article  Google Scholar 

  24. Dowdeswell JA, Unwin B, Nuttall AM, Wingham DJ (1999) Velocity structure, flow instability and mass flux on a large Arctic ice cap from satellite radar interferometry. Earth Planet Sci Lett 167(3):131–140

    Article  Google Scholar 

  25. Etzelmüller B, Hagen J, Vatne G, Ødegård R, Sollid J (1996) Glacial debris accumulation and sediment deformation influenced by permafrost: examples from Svalbard. Ann Glaciol 22:53–62

    Article  Google Scholar 

  26. Evans DJA (1989) Apron entrainment at the margins of sub-polar glaciers, north-west Ellesmere Island, Canadian High Arctic. J Glaciol 35(121):317–324

    Article  Google Scholar 

  27. Evans DJA (2009) Controlled moraines: origins, characteristics and palaeoglaciological implications. Quat Sci Rev 28(3):183–208

    Article  Google Scholar 

  28. Evans DJA, England J (1991) High Arctic thrust block moraines. Can Geogr/Le Géographe canadien 35(1):93–97

    Article  Google Scholar 

  29. Evans DJA, Rea BR (1999) Geomorphology and sedimentology of surging glaciers: a land-systems approach. Ann Glaciol 28:75–82

    Article  Google Scholar 

  30. Evans DJA, Rea BR (2003) Surging glacier landsystem. In: Evans DJA (ed) Glacial landsystems. Arnold, London, pp 259–288

    Google Scholar 

  31. Evans DJA, Thomson SA (2010) Glacial sediments and landforms of Holderness, eastern England: a glacial depositional model for the North Sea Lobe of the British-Irish Ice Sheet. Earth Sci Rev 101:147–189

    Article  Google Scholar 

  32. Evans DJA, Lemmen DS, Rea BR (1999) Glacial landsystems of the southwest Laurentide Ice Sheet: modern Icelandic analogues. J Quat Sci 14(7):673–691

    Article  Google Scholar 

  33. Evans DJA, Clark CD, Rea BR (2008) Landform and sediment imprints of fast glacier flow in the southwest Laurentide Ice Sheet. J Quat Sci 23(3):249–272

    Article  Google Scholar 

  34. Evans DJA, Storrar RD, Rea BR (2016) Crevasse-squeeze ridge corridors: diagnostic features of late-stage palaeo-ice stream activity. Geomorphology 258:40–50

    Article  Google Scholar 

  35. Farnsworth WR, Ingólfsson Ó, Retelle M, Schomacker A (2016) Over 400 previously undocumented Svalbard surge-type glaciers identified. Geomorphology 264:52–60

    Article  Google Scholar 

  36. Flink AE, Noormets R, Fransner O, Hogan KA, O’Regan M, Jakobsson M (2017) Past ice flow in Wahlenbergfjorden and its implications for late Quaternary ice sheet dynamics in northeastern Svalbard. Quat Sci Rev 163:162–179

    Article  Google Scholar 

  37. Garwood EJ, Gregory JW (1898) Contributions to the glacial geology of Spitsbergen. Q J Geol Soc 54:197–227

    Article  Google Scholar 

  38. Grant KL, Stokes CR, Evans IS (2009) Identification and characteristics of surge-type glaciers on Novaya Zemlya, Russian Arctic. J Glaciol 55(194):960–972

    Article  Google Scholar 

  39. Gribenski N, Jansson KN, Lukas S, Stroeven AP, Harbor JM, Blomdin R, Ivanov MN, Heyman J, Petrakov DA, Rudoy A, Clifton T, Lifton NA, Caffee MW (2016) Complex patterns of glacier advances during the late glacial in the Chagan Uzun Valley, Russian Altai. Quat Sci Rev 149:288–305

    Article  Google Scholar 

  40. Gripp K (1929) Glaciologische und geologische Ergebnisse der Hamburgischen Spitzbergen-Expedition 1927. Abhandlungen der naturwissenschaftlichen Verein Hamburg, Hamburg

    Google Scholar 

  41. Hagen JO (1988) Glacier surge in Svalbard with examples from Usherbreen. Nor Geogr Tidsskr 42:204–213

    Article  Google Scholar 

  42. Hagen JO, Liestøl O, Roland E, Jørgensen T (1993) Glacier atlas of Svalbard and Jan Mayen. Nor Polar Inst Meddelelser 129:1–141

    Google Scholar 

  43. Hambrey MJ, Huddart D (1995) Englacial and proglacial glaciotectonic processes at the snout of a thermally complex glacier in Svalbard. J Quat Sci 10(4):313–326

    Article  Google Scholar 

  44. Hamilton GS (1992) Investigations of surge-type glaciers in Svalbard. PhD Thesis, University of Cambridge

  45. Hamilton GS, Dowdeswell JA (1996) Controls on glacier surging in Svalbard. J Glaciol 42(140):157–168

    Article  Google Scholar 

  46. Hansen S (2003) From surge-type to non-surge-type glacier behaviour: midre Lovénbreen, Svalbard. Ann Glaciol 36(1):97–102

    Article  Google Scholar 

  47. Hart JK (1990) Proglacial glaciotectonic deformation and the origin of the Cromer Ridge push moraine complex, North Norfolk, England. Boreas 19(2):165–180

    Article  Google Scholar 

  48. Hart JK, Watts RJ (1997) A comparison of the styles of deformation associated with two recent push moraines, south Van Keulenfjorden, Svalbard. Earth Surf Proc Land 22:1089–1107

    Article  Google Scholar 

  49. Hodgkins R, Hagen JO, Hamran SE (1999) 20th century mass balance and thermal regime change at Scott Turnerbreen, Svalbard. Ann Glaciol 28(1):216–220

    Article  Google Scholar 

  50. Huddart D, Hambrey MJ (1996) Sedimentary and tectonic development of a high-arctic, thrust-moraine complex: comfortlessbreen, Svalbard. Boreas 25(4):227–243

    Article  Google Scholar 

  51. Ingólfsson Ó, Benediktsson ÍÖ, Schomacker A, Kjær KH, Brynjólfsson S, Jónsson SA, Korsgaard NK, Johnson MD (2016) Glacial geological studies of surge-type glaciers in Iceland—research status and future challenges. Earth Sci Rev 152:37–69

    Article  Google Scholar 

  52. James TD, Murray T, Barrand NE, Sykes HJ, Fox AJ, King MA (2012) Observations of enhanced thinning in the upper reaches of Svalbard glaciers. Cryosphere 6(6):1369–1381

    Article  Google Scholar 

  53. Jiskoot H, Boyle P, Murray T (1998) The incidence of glacier surging in Svalbard: evidence from multivariate statistics. Comput Geosci 24(4):387–399

    Article  Google Scholar 

  54. Jiskoot H, Murray T, Boyle P (2000) Controls on the distribution of surge-type glaciers in Svalbard. J Glaciol 46(154):412–422

    Article  Google Scholar 

  55. Kälin M (1971). The active push moraine of the Thompson Glacier, Axel Heiberg Island, Canadian Arctic Archipelago. Axel Heiberg Island Research Reports, Glaciology No. 4, McGill University, Montreal. PhD Thesis, ETH Zürich

  56. Kehew AE, Beukema SP, Bird BC, Kozlowski AL (2005) Fast flow of the Lake Michigan Lobe: evidence from sediment-landform assemblages in southwestern Michigan, USA. Quat Sci Rev 24(22):2335–2353

    Article  Google Scholar 

  57. King O, Hambrey MJ, Irvine-Fynn TD, Holt TO (2016) The structural, geometric and volumetric changes of a polythermal Arctic glacier during a surge cycle: Comfortlessbreen, Svalbard. Earth Surf Process Landf 41(2):162–177

    Article  Google Scholar 

  58. Kjær KH, Korsgaard NJ, Schomacker A (2008) Impact of multiple glacier surges - a geomorphological map from Brúarjökull, East Iceland. J Maps 4(1):5–20

    Article  Google Scholar 

  59. Kristensen L, Benn DI, Hormes A, Ottesen D (2009) Mud aprons in front of Svalbard surge moraines: evidence of subglacial deforming layers or proglacial glaciotectonics? Geomorphology 111:206–221

    Article  Google Scholar 

  60. Kristensen L, Juliussen H, Christiansen HH, Humlum O (2009) Structure and composition of a tidewater glacier push moraine, Svalbard, revealed by DC resistivity profiling. Boreas 38:176–186

    Article  Google Scholar 

  61. Lamplugh CW (1911) On the shelly moraine of the Sefström Glacier and other Spitsbergen phenomena illustrative of British glacial conditions. Proc Yorks Geol Polytech Soc 17(3):216–241

    Article  Google Scholar 

  62. Larsen NK, Kronborg C, Yde JC, Knudsen NT (2010) Debris entrainment by basal freeze-on and thrusting during the 1995-1998 surge of Kuannersuit Glacier on Disko Island, west Greenland. Earth Surf Proc Land 35(5):561–574

    Google Scholar 

  63. Lefauconnier B, Hagen JO (1991) Surging and calving glaciers in eastern Svalbard. Norwegian Polarinstitutt Meddeleler 116, pp 132

  64. Liestøl Ø (1993) Glaciers of Svalbard, Norway. US Geol Surv Prof Pap 1386:127–151

    Google Scholar 

  65. Lønne I (2016) A new concept for glacial geological investigations of surges, based on High-Arctic examples (Svalbard). Quat Sci Rev 132:74–100

    Article  Google Scholar 

  66. Lovell H, Stokes CR, Bentley MJ, Benn DI (2012) Evidence for rapid ice flow and proglacial lake evolution around the central Strait of Magellan region, southernmost Patagonia. J Quat Sci 27(6):625–638

    Article  Google Scholar 

  67. Lovell H, Fleming EJ, Benn DI, Hubbard B, Lukas S, Rea BR, Noormets R, Flink AE (2015) Debris entrainment and landform genesis during tidewater glacier surges. J Geophys Res: Earth Surf 120(8):1574–1595

    Article  Google Scholar 

  68. Lovell H, Fleming EJ, Benn DI, Hubbard B, Lukas S, Naegeli K (2015) Former dynamic behaviour of a cold-based valley glacier on Svalbard revealed by basal ice and structural glaciology investigations. J Glaciol 61(226):309–328

    Article  Google Scholar 

  69. Małecki J, Faucherre S, Strzelecki MC (2013) Post-surge geometry and thermal structure of Hørbyebreen, central Spitsbergen. Polish Polar Res 34:305–321

    Google Scholar 

  70. Małecki J (2016) Accelerating retreat and high-elevation thinning of glaciers in central Spitsbergen. Cryosphere 10(3):1317–1329

    Article  Google Scholar 

  71. Meier MF, Post A (1969) What are glacier surges? Can J Earth Sci 6(4):807–817

    Article  Google Scholar 

  72. Murray T, Strozzi T, Luckman A, Jiskoot H, Christakos P (2003) Is there a single surge mechanism? Contrasts in dynamics between glacier surges in Svalbard and other regions. J Geophys Res: Solid Earth 108(B5):1–15

    Article  Google Scholar 

  73. Nuth C, Kohler J, König M, Deschwanden AV, Hagen JO, Kääb A, Morholdt G, Pettersson R (2013) Decadal changes from a multi-temporal glacier inventory of Svalbard. Cryosphere 7(5):1603–1621

    Article  Google Scholar 

  74. Ottesen D, Dowdeswell JA (2006) Assemblages of submarine landforms produced by tidewater glaciers in Svalbard. J Geophys Res: Earth Surf 111(F1):1–16

    Article  Google Scholar 

  75. Rea BR, Evans DJA (2011) An assessment of surge induced crevassing and the formation of crevasse squeeze ridges. J Geophys Res: Earth Surf 116(F04005):1–17

    Google Scholar 

  76. Roberts DH, Yde JC, Knudsen NT, Long AJ, Lloyd JM (2009) Ice marginal dynamics during surge activity, Kuannersuit Glacier, Disko Island, West Greenland. Quat Sci Rev 28:209–222

    Article  Google Scholar 

  77. Schomacker A, Kjær KH (2008) Quantification of dead-ice melting in ice-cored moraines at the high-Arctic glacier Holmströmbreen, Svalbard. Boreas 37(2):211–225

    Article  Google Scholar 

  78. Schomacker A, Benediktsson ÍÖ, Ingólfsson Ó (2014) The Eyjabakkajökull glacial landsystem, Iceland: geomorphic impact of multiple surges. Geomorphology 218:98–107

    Article  Google Scholar 

  79. Sevestre H, Benn DI (2015) Climatic and geometric controls on the global distribution of surge-type glaciers: implications for a unifying model of surging. J Glaciol 61(228):646–662

    Article  Google Scholar 

  80. Sharp MJ (1985) “Crevasse-fill” ridges: a landform type characteristic of surging glaciers? Geografiska Annaler. Series A. Phys Geogr 67(3–4):213–220

    Google Scholar 

  81. Sletten K, Lyså A, Lønne I (2001) Formation and disintegration of a high-arctic ice-cored moraine complex, Scott Turnerbreen, Svalbard. Boreas 30(4):272–284

    Article  Google Scholar 

  82. Streuff K, Forwick M, Szczuciński W, Andreassen K, ÓCofaigh C (2015) Submarine landform assemblages and sedimentary processes related to glacier surging in Kongsfjorden, Svalbard. arktos 1(1):1–19

    Article  Google Scholar 

  83. Sund M, Eiken T, Hagen JO, Kääb A (2009) Svalbard surge dynamics derived from geometric changes. Ann Glaciol 50(52):50–60

    Article  Google Scholar 

  84. van der Meer JJM (ed) (2004) Spitsbergen Push Moraines: including a translation of K. Gripp: Glaciologische und Geologische Ergebnisse Der Hamburgischen Spitzbergen-Expedition 1927 (4). Elsevier, Amsterdam

  85. van der Wateren FM (1995) Structural geology and sedimentology of push moraines: processes of soft sediment deformation in a glacial environment and the distribution of glaciotectonic styles, vol 54. Mededelingen Rijks Geologische, pp 1–168

  86. von Heuglin MT (1872) Reise in Norwegen und Spitzbergen 1870, Braunschweig

  87. Yde JC, Knudsen NT, Larsen NK, Kronborg C, Nielsen OB, Heinemeier J, Olsen J (2005) The presence of thrust-block naled after a major surge event: Kuannersuit Glacier, West Greenland. Ann Glaciol 42(1):145–150

    Article  Google Scholar 

Download references

Acknowledgements

This study would not have been possible without access to the Norwegian Polar Institute’s TopoSvalbard aerial photograph archive. We would like to thank Doug Benn, Sven Lukas and Wes Farnsworth for useful discussions on this topic; Derek Mottershead for commenting on an earlier version; and Richard Waller and an anonymous reviewer for making suggestions that have significantly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold Lovell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovell, H., Boston, C.M. Glacitectonic composite ridge systems and surge-type glaciers: an updated correlation based on Svalbard, Norway. Arktos 3, 2 (2017). https://doi.org/10.1007/s41063-017-0028-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41063-017-0028-5

Keywords

Navigation