Skip to main content
Log in

Deriving Explicit Equations for Optimum Design of a Circular Channel Incorporating a Variable Roughness

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

The need for optimum design of water conveyance structures provides an active area of study in water resources engineering. A literature review on optimum design of circular channels indicates that variation of Manning’s roughness coefficient (n) with water depth is not taken into account. In this study, this variation has been implemented in the optimum design of lined circular channels. The significant discrepancy between the results obtained for constant and variable roughness scenarios demonstrates the necessity for considering roughness coefficient variability with water depth in circular sections. Furthermore, a new explicit equation for optimum design of section parameters has been proposed using a hybrid optimization technique, which combines the Modified Honey Bee Mating Optimization with Generalized Reduced Gradient algorithms. Solving a typical design problem in the literature by the proposed equation showed not only its adequate performance but also the necessity for considering variable roughness in circular channels design procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Afzali SH (2016) Variable-parameter Muskingum model. Iran J Sci Technol Trans Civ Eng 40(1):59–68

    Article  Google Scholar 

  • Afzali SH, Darabi A, Niazkar M (2016) Steel frame optimal design using MHBMO algorithm. Int J Steel Struct 16(2):455–465

    Article  Google Scholar 

  • Akgiray O (2004) Simple formulae for velocity, depth of flow, and slope calculations in partially filled circular pipes. Environ Eng Sci 21(3):371–385

    Article  Google Scholar 

  • Aksoy B, Altan-Sakarya AB (2006) Optimal lined channel design. Can J Civ Eng 33(5):535–545

    Article  Google Scholar 

  • Bhattacharjya RK, Satish MG (2007) Optimal design of a stable trapezoidal channel section using hybrid optimization techniques. J Irrig Drain Eng 133(4):323–329

    Article  Google Scholar 

  • Chow VT (1959) Open-channel hydraulics. McGraw-Hill, New York

    Google Scholar 

  • Chow VT (1973) Open-channel hydraulics. McGraw-Hill, New York

    Google Scholar 

  • Esmi Jahromi M, Afzali S (2014) Application of the HBMO approach to predict the total sediment discharge. Iran J Sci Technol Trans Civ Eng 38(C1):123–135

    Google Scholar 

  • French RH (1994) Open-channel hydraulics. McGraw-Hill, New York

    Google Scholar 

  • Guo CY, Hughes WC (1984) Optimal channel cross section with freeboard. J Irrig Drain Eng 110(3):304–314

    Article  Google Scholar 

  • Jain A, Bhattacharjya RK, Sanaga S (2004) Optimal design of composite channels using genetic algorithm. J Irrig Drain Eng 130(4):286–295

    Article  Google Scholar 

  • Kaveh A, Talatahari S, Farhmand Azar B (2012) Optimum design of composite channels using charged system search algorithm. Iran J Sci Technol Trans Civ Eng 36(C1):67–77

    Google Scholar 

  • Loganathan G (1991) Optimal design of parabolic canals. J Irrig Drain Eng 117(5):716–735

    Article  Google Scholar 

  • Monadjemi P (1994) General formulation of best hydraulic channel section. J Irrig Drain Eng 120(1):27–35

    Article  Google Scholar 

  • Niazkar M, Afzali SH (2014) Assessment of modified honey bee mating optimization for parameter estimation of nonlinear Muskingum models. J Hydrol Eng 20(4):04014055

    Article  Google Scholar 

  • Niazkar M, Afzali SH (2015a) Optimum design of lined channel sections. Water Resour Manag 29(6):1921–1932

    Article  Google Scholar 

  • Niazkar M, and Afzali SH (2015b) Application of Excel spreadsheet in engineering education. In: Proceeding of the first international and fourth national conference on engineering education, Shiraz University, Shiraz, 10–12 Nov

  • Niazkar M, Afzali SH (2016a) Application of new hybrid optimization technique for parameter estimation of new improved version of Muskingum model. Water Resour Manag 30(13):4713–4730

    Article  Google Scholar 

  • Niazkar M, Afzali SH (2016b) Parameter estimation of an improved nonlinear Muskingum model using a new hybrid model. Hydrol Res 48(4):1253–1267. https://doi.org/10.2166/nh.2016.089

    Google Scholar 

  • Niazkar M, Afzali SH (2016c) Streamline performance of Excel in stepwise implementation of numerical solutions. Comput Appl Civ Eng 24(4):555–566

    Article  Google Scholar 

  • Niazkar M, Afzali SH (2017a) Application of new hybrid method in developing a new semicircular-weir discharge model. Alex Eng J. https://doi.org/10.1016/j.aej.2017.05.004

    Google Scholar 

  • Niazkar M, Afzali SH (2017b) New nonlinear variable-parameter Muskingum Models. KSCE J Civ Eng. https://doi.org/10.1007/s12205-017-0652-4

    Google Scholar 

  • Niazkar M, Afzali SH (2017c) Analysis of water distribution networks using MATLAB and Excel spreadsheet: h-based methods. Comput Appl Eng Educ 25(1):129–141

    Article  Google Scholar 

  • Niazkar M, Afzali SH (2017d) Analysis of water distribution networks using MATLAB and Excel spreadsheet: Q-based methods. Comput Appl Eng Educ 25(2):277–289

    Article  Google Scholar 

  • Nourani V, Talatahari S, Monadjemi P, Shahradfar S (2009) Application of ant colony optimization to optimal design of open channels. J Hydraul Res 47(5):656–665

    Article  Google Scholar 

  • Swamee PK (1995) Optimal irrigation canal sections. J Irrig Drain Eng 121(6):467–469

    Article  Google Scholar 

  • Swamee PK, Bhatia KG (1972) Economic open channel section. J Irrig Power 29(2):169–176

    Google Scholar 

  • Swamee PK, Mishra GC, Chahar BR (2000) Minimum cost design of lined canal sections. Water Resour Manag 14(1):1–12

    Article  Google Scholar 

  • Turan ME, Yurdusev MA (2011) Optimization of open canal cross sections by differential evolution algorithm. Math Comput Appl 16(1):77

    Google Scholar 

  • Wilcox ER (1924) A comparative test of the flow of water in 8-inch concrete and vitrified clay sewer pipes. University of Washington, Engineering Experiment Station, Bulletin no. 27

  • Yarnell DL, Woodward SM (1920) The flow of water in drain tile. US Department of Agriculture, Washington, DC, Bulletin no. 854

  • Zaghloul NA (1992) Gradually varied flow in circular channels with variable roughness. Adv Eng Softw 15(1):33–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Reza Rakhshandehroo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niazkar, M., Rakhshandehroo, G.R. & Afzali, S.H. Deriving Explicit Equations for Optimum Design of a Circular Channel Incorporating a Variable Roughness. Iran J Sci Technol Trans Civ Eng 42, 133–142 (2018). https://doi.org/10.1007/s40996-017-0091-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-017-0091-y

Keywords

Navigation