Skip to main content
Log in

Wave Height Prediction Using Artificial Immune Recognition Systems (AIRS) and Some Other Data Mining Techniques

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

Significant wave height (SWH) prediction is an important task in coastal engineering activities. Due to difficulties and complexities in predicting SWH using traditional numerical and empirical models, in the past decades, a high tendency to use soft computing approaches has been observed. In this paper, an artificial immune recognition system (AIRS), which is a recently developed data mining approach, is utilized for SWH prediction. The results of AIRS model are compared with those of artificial neural networks (ANN), regression tree induction (named M5P), Rough Set Theory, Bayesian networks and support vector regression models. The AIRS has been successfully employed in some engineering applications, but its efficiency and applicability for SWH prediction have not been investigated. In this paper, the AIRS model is utilized for the SWH prediction in the Lake Superior in North America. Comparing the results of this model and five other data mining techniques shows that the AIRS and ANN can outperform other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abed-Elmdoust A, Kerachian R (2012) Wave height prediction using the rough set theory. Ocean Eng 54:244–250

    Article  Google Scholar 

  • Agrawal JD, Deo MC (2004) Wave parameter estimation using neural networks. Mar Struct 17:536–550

    Article  Google Scholar 

  • Akpmar A, Ozger M, Komurcu MI (2013) Prediction of wave parameters by using fuzzy inference system and parametric models along the south coasts of the Balk Sea. J Mar Sci Technol. doi:10.1007/s00773-013-0226-1

    Google Scholar 

  • Altunkaynak A (2008) Adaptive estimation of wave parameters by Geno-Kalman filtering. Ocean Eng 35:1245–1251

    Article  Google Scholar 

  • Altunkaynak A, Özger M (2004) Temporal significant wave height estimation from wind speed by perceptron Kalman filtering. Ocean Eng 31(10):1245–1255

    Article  Google Scholar 

  • Altunkaynak A, Wang KH (2012) Estimation of significant wave height in shallow lakes using the expert system techniques. Expert Syst Appl 39(3):2549–2559

    Article  Google Scholar 

  • Asma S, Sezer A, Ozdemir O (2012) MLR and ANN models of significant wave height on the west coast of India. Comput Geosci 49:231–237

    Article  Google Scholar 

  • Bansal S, Roy S, Larachi F (2012) Support vector regression models for trickle bed reactors. Chem Eng J 207–208:822–831

    Article  Google Scholar 

  • Basak D, Pal S, Patranabis DC (2007) Support vector regression. Neural Inf Process 11(10):203–224

    Google Scholar 

  • Bashi-Azghadi SN, Kerachian R (2010) Locating monitoring wells in groundwater systems using embedded optimization and simulation models. Sci Total Environ 408(10):2189–2198

    Article  Google Scholar 

  • Bashi-Azghadi SN, Kerachian R, Bazargan-Lari MR, Solouki K (2010) Characterizing an unknown pollution source in groundwater resources systems using PSVM and PNN. Expert Syst Appl 37:7154–7161

    Article  Google Scholar 

  • Bashi-Azghadi SN, Kerachian R, Bazargan-Lari MR, Nikoo MR (2016) Pollution source identification in groundwater systems: application of regret theory and Bayesian networks. Iran J Sci Technol Trans Civ Eng 40(3):241–249

    Article  Google Scholar 

  • Bonakdar L, Etemad-Shahidi A (2011) Predicting wave run-up on rubble-mound structures using M5 model tree. Ocean Eng 38:111–118

    Article  Google Scholar 

  • Booij N, Ris RC, Holthuijsen LH (1994) A third-generation wave model for coastal regions. 1. Model description and validation. J Geophys Res Oceans 104(C4):7649–7666

    Article  Google Scholar 

  • Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167

    Article  Google Scholar 

  • Deo MC, Naidu CS (1998) Real time wave forecasting using neural networks. Ocean Eng 26:191–203

    Article  Google Scholar 

  • Deo MC, Jha A, Chaphekar AS, Ravicant K (2001) Neural networks for wave forecasting. Ocean Eng 28:889–898

    Article  Google Scholar 

  • Donelan MA (1980) Similarity theory applied to the forecasting of wave heights, periods and directions. In: Proceedings of Canadian coastal conference. National Research Council of Canada, pp 47–61

  • Donelan MA, Hamilton J, Hui WH (1985) Directional spectra of wind-generated waves. Philos Trans R Soc A 315(1534):509–562

    Article  Google Scholar 

  • Egozcue JJ, Pawlowsky-Glahn V, Ortego MI (2005) Wave-height hazard analysis in Eastern Coast of Spain-Bayesian approach using generalized Pareto distribution. Adv Geosci 2:25–30

    Article  Google Scholar 

  • Etemad-Shahidi A, Ghaemi N (2011) Model tree approach for prediction of pile groups scour due to waves. Ocean Eng 38:1522–1527

    Article  Google Scholar 

  • Etemad-Shahidi A, Mahjoobi J (2009) Comparison between M5 model tree and neural networks for prediction of significant wave height in lake superior. Ocean Eng 36:1175–1181

    Article  Google Scholar 

  • Gaur S, Deo MC (2008) Real-time wave forecasting using genetic programming. Ocean Eng 35:1166–1172

    Article  Google Scholar 

  • Gunaydin K (2008) The estimation of monthly mean significant wave heights by using artificial neural network and regression methods. Ocean Eng 35(14–15):1406–1415

    Article  Google Scholar 

  • Hasselmann K, Barnett TP, Bouws E, Carlson H, Cartwright DE, Enke K (1973) Measurements of wind-wave growth and swell decay during the joint north sea wave project (JONSWAP). Dtsch Hydrogr Z Erganz Reihe A 8:95

    Google Scholar 

  • Jain P, Deo MC (2007) Real-time wave forecasts off the western Indian coast. Appl Ocean Res 29:72–79

    Article  Google Scholar 

  • Kalra R, Deo MC, Kumar R, Aggarwal VK (2005) RBF network for spatial mapping of wave heights. Mar Struct 18:289–300

    Article  Google Scholar 

  • Kamranzad B, Etemad-Shahidi A, Kazeminezhad MH (2011) Wave height forecasting in Dayyer, the Persian Gulf. Ocean Eng 38(1):248–255

    Article  Google Scholar 

  • Kara S, Aksebzeci BH, Kodaz H, Günes S, Kaya E, Ozbilge H (2009) Medical application of information gain-based artificial immune recognition system (IG-AIRS): classification of microorganism species. Expert Syst Appl 36:5168–5172

    Article  Google Scholar 

  • Kazeminezhad MH, Etemad-Shahidi A, Mousavi SJ (2005) Application of fuzzy inference system in the prediction wave parameters. Ocean Eng 32:1709–1725

    Article  Google Scholar 

  • Kodaz H, Ozsen S, Arslan A, Gunes S (2009) Medical application of information gain based artificial immune recognition system (AIRS): diagnosis of thyroid disease. Expert Syst Appl 36:3086–3092

    Article  Google Scholar 

  • Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (1994) Dynamics and modelling of ocean waves. Cambridge University Press

  • Latifoglu F, Polat K, Kara S, Gunes S (2008) Medical diagnosis of atherosclerosis from carotid artery doppler signals using principal component analysis (PCA), k-NN based weighting pre-processing and artificial immune recognition system (AIRS). J Biomed Inform 41:15–23

    Article  Google Scholar 

  • Li Q, Meng Q, Cai J, Yoshino H, Mochida A (2009) Applying support vector machine to predict hourly cooling load in the building. Appl Energy 86:2249–2256

    Article  Google Scholar 

  • Lin LC, Chang HK (2008) An adaptive neuro-fuzzy inference system for sea level prediction considering tide-generating forces and oceanic thermal expansion. Terr Atmos Ocean Sci 19:163–172

    Article  Google Scholar 

  • Londhe SN (2008) Soft computing approach for real-time estimation of missing wave heights. Ocean Eng 35(11–12):1080–1089

    Article  Google Scholar 

  • Londhe SN, Panchang V (2006) One day wave forecasts using buoy data and artificial neural networks. J Atmos Ocean Technol 9:1593–1603

    Article  Google Scholar 

  • Mahjoobi J, Adeli Mosabbeb E (2009) Prediction of significant wave height using regressive support vector machines. Ocean Eng 36(5):339–347

    Article  Google Scholar 

  • Mahjoobi J, Etemad-Shahidi A (2008) An alternative approach for the prediction of significant wave heights based on classification and regression trees. Appl Ocean Res 30:172–177

    Article  Google Scholar 

  • Mahjoobi J, Etemad-Shahidi A, Kazeminezhad MH (2008) Hindcasting of wave parameters using different soft computing methods. Appl Ocean Res 30:28–36

    Article  Google Scholar 

  • Makarynskyy O (2004) Improving wave predictions with artificial neural networks. Ocean Eng 31(5–6):709–724

    Article  Google Scholar 

  • Makarynskyy O, Pires-Silva AA, Makarynska D, Ventura-Soares C (2005) Artificial neural networks in wave predictions at the west coast of Portugal. Comput Geosci 31(4):415–424

    Article  Google Scholar 

  • Malekmohamadi I, Ghiassi R, Yazdanpanah MJ (2008) Wave hindcasting by coupling numerical model and artificial neural networks. Ocean Eng 35:417–425

    Article  Google Scholar 

  • Malekmohamadi I, Bazargan-Lari MR, Kerachian R, Nikoo MR, Fallahnia M (2011) Evaluating the efficacy of SVMs, BNs, ANNs and ANFIS in wave height prediction. Ocean Eng 38(2–3):487–497

    Article  Google Scholar 

  • Mandal S, Prabaharan N (2006) Ocean wave forecasting using recurrent neural networks. Ocean Eng 33:1401–1410

    Article  Google Scholar 

  • Moeini MH, Etemad-Shahidi A (2007) Application of two numerical models for wave hindcasting in Lake Erie. Appl Ocean Res 29:137–145

    Article  Google Scholar 

  • Nitsure SP, Londhe SN, Khare KC (2012) Wave forecasts using wind information and genetic programming. Ocean Eng 54:61–69

    Article  Google Scholar 

  • Ozger M, Sen Z (2007) Prediction of wave parameters by using fuzzy logic approach. Ocean Eng 34:460–469

    Article  Google Scholar 

  • Polat K, Günes S, Tosunb S (2006a) Diagnosis of heart disease using artificial immune recognition system and fuzzy weighted pre-processing. Pattern Recogn 39:2186–2193

    Article  Google Scholar 

  • Polat K, Sahan S, Kodaz H, Gunes SA (2006b) New method to medical diagnosis: artificial immune recognition system (AIRS) with fuzzy weighted pre-processing and application to ECG arrhythmia. Expert Syst Appl 31(2):264–269

    Article  Google Scholar 

  • Quinlan JR (1992) Learning with continuous classes. In: Adams, Sterling (eds) Proceedings AI’92, 5th Australian joint conference on artificial intelligence. World Scientific, Singapore, pp 343–348

  • Rao S, Mandal S, Prabaharan N (2001) Wave forecasting in near real time basis by neural network. In: Proceedings of the international conference in ocean engineering, IIT Madras Chennai, pp 105–108

  • Scotto MG, Soares CG (2007) Bayesian inference for long-term prediction of significant wave height. Coast Eng 54:393–400

    Article  Google Scholar 

  • Sverdrup HU, Munk WH (1947) Wind sea and swell: theory of relations for forecasting. US Navy Hydrographic Office, Washington

    Book  Google Scholar 

  • Timmis J, Neal M (2001) A resources limited artificial system for data analysis. Knowl Based Syst 14:121–130

    Article  Google Scholar 

  • Timmis J, Knight T, De Castro LN, Hart E (2004) An Overview of Artificial Immune Systems. In: Paton R, Bolouri H, Holcombe M, Parish JH, Tateson R (eds) Computation in Cells and Tissues. Natural Computing Series. Springer, Berlin, Heidelberg

  • Tsai CP, Lin C, Shen JN (2002) Neural network for wave forecasting among multi-stations. Ocean Eng 29:1683–1695

    Article  Google Scholar 

  • US Army (1984) Shore protection manual, vol 2, 4th edn. US Army Corps of Engineers, Waterways Experiment Station, US Government Printing Office, Washington

    Google Scholar 

  • US Army (2006) Coastal engineering manual. Chapter II-2, meteorology and wave climate. Engineer manual 1110-2-1100. US Army Corps of Engineers, Washington

    Google Scholar 

  • Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  • Wang L (2005) Support vector machines: theory and applications. Springer, New York

    Book  MATH  Google Scholar 

  • Wang Y, Witten IH (1997) Induction of model trees for predicting continuous lasses. In: Proceedings of the poster papers of the European conference on machine learning. University of Economics, Faculty of Informatics and Statistics, Prague

  • Wang XL, Yin ZJ (2007) Artificial immune recognition system as a new classifier for reservoir operating rules extraction. Intell Inf Hid Multimed Signal Process IIHMSP 2:149–153

    Google Scholar 

  • Wang XL, Cheng JH, Yin ZJ, Guo MJ (2011) A new approach of obtaining reservoir operation rules: artificial immune recognition system. Expert Syst Appl 38:11701–11707

    Article  Google Scholar 

  • Watkins A (2001) AIRS: a resource limited artificial immune classifier, Master Thesis, Mississippi State University

  • Watkins A, Timmis J, Boddess L (2004) Artificial immune recognition system (AIRS): an immune-inspired supervised learning algorithm. Genet Program Evolvable Mach 5(3):291–317

    Article  Google Scholar 

  • Wilson BW (1965) Numerical prediction of ocean waves in the North Atlantic for December, 1959. Dtsch Hydrogr Z 18(3):14–30

    Article  Google Scholar 

  • Zanaganeh M, Mousavi SJ, Etemad-Shahidi AF (2009) A hybrid genetic algorithm-adaptive network-based fuzzy inference system in prediction of wave parameters. Eng Appl Artif Intell 22(8):1194–1202

    Article  Google Scholar 

  • Zanganeh M, Mousavi SJ, Etemad-Shahidi A (2006) A genetic algorithm-based fuzzy inference system in prediction of wave parameters. Adv Soft Comput 38:741–750

    Google Scholar 

  • Zhang WY, Hong WC, Dong Y, Tsai G, Sung JT, Fan GF (2012) Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting. Energy 45:850–858

    Article  Google Scholar 

  • Zhao W, Davis CE (2011) A modified artificial immune system based pattern recognition approach-An application to clinical diagnostics. Artif Intell Med 52:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Nikoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikoo, M.R., Kerachian, R. Wave Height Prediction Using Artificial Immune Recognition Systems (AIRS) and Some Other Data Mining Techniques. Iran J Sci Technol Trans Civ Eng 41, 329–344 (2017). https://doi.org/10.1007/s40996-017-0067-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-017-0067-y

Keywords

Navigation