Skip to main content
Log in

Thermal expansion behavior of Al–xSi alloys fabricated using selective laser melting

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

Al–Si alloys are lightweight materials and show excellent mechanical and physical properties, making them appealing for automotive and aerospace industries applications. In this study, Al–(12–50 wt.%)Si alloys (nearly eutectic to hyper-eutectic compositions) were fabricated using a laser-based powder bed fusion process (LPBF) or selective laser melting technique (SLM). The microstructural evolution of the SLM Al–Si alloys as a function of increasing Si contents is investigated in detail. Refined Al and Si phases are observed and the mechanism of the refinement is discussed. In addition, the mechanical properties of the Al–Si alloy processed by casting and SLM were compared. Moreover, the influence of Si content and heating time on the coefficient of thermal expansion (CTE) of the alloys are investigated in detail, and their relationship between theoretical models and the experimental CTE values for the Al–Si alloys will be discussed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jung JG, Ahn TY, Cho YH, Kim SH, Lee JM (2018) Synergistic effect of ultrasonic melt treatment and fast cooling on the refinement of primary Si in a hypereutectic Al–Si alloy. Acta Mater 144:31–40. https://doi.org/10.1016/j.actamat.2017.10.039

    Article  Google Scholar 

  2. Zhang SK, Ma P, Jia YD, Yu ZS, Sokkalingam R, Shi XR, Ji PC, Eckert J, Prashanth KG (2019) Microstructure and mechanical properties of Al-(12–20)Si Bi-material fabricated by selective laser melting. Mater 12:2126. https://doi.org/10.3390/ma12132126

    Article  Google Scholar 

  3. Hanemann T, Carter LN, Habschied M, Adkins NJE, Attallah MM, Heilmaier M (2019) In-situ alloying of AlSi10Mg + Si using selective laser melting to control the coefficient of thermal expansion. J Alloys Compd 795:8–18. https://doi.org/10.1016/j.jallcom.2019.04.260

    Article  Google Scholar 

  4. Li XP, Wang XJ, Saunders M, Suvorova A, Zhang LC, Liu YJ, Fang MH, Huang ZH, Sercombe TB (2015) A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility. Acta Mater 95:74–82. https://doi.org/10.1016/j.actamat.2015.05.017

    Article  Google Scholar 

  5. Kang N, Coddet P, Chen CY, Wang Y, Liao HL, Coddet C (2016) Microstructure and wear behavior of in-situ hypereutectic Al-high Si alloys produced by selective laser melting. Mater Des 99:120–126. https://doi.org/10.1016/j.matdes.2016.03.053

    Article  Google Scholar 

  6. Prashanth KG (2019) Work hardening in selective laser melted Al-12Si alloy. Mater Des Process Commun 1:e46. https://doi.org/10.1002/mdp2.46

    Article  Google Scholar 

  7. Acharya M, Mandal A (2019) Individual and synergistic effect of gamma alumina (γ-Al2O3) and strontium on microstructure and mechanical properties of Al−20Si alloy. Trans Nonferr Metal Soc 29:1353–1364. https://doi.org/10.1016/S1003-6326(19)65042-9

    Article  Google Scholar 

  8. Wang K, Lu X, Zhu YM, Jiang HY, Wang QD, Ye B, Ding WJ (2019) In-situ synthesis of novel Al–P–O master alloy and its refinement and modification effects on Si phases in hypereutectic Al–30Si alloys. Mater Character 157:109900. https://doi.org/10.1016/j.matchar.2019.109900

    Article  Google Scholar 

  9. Jia YD, Ma P, Prashanth KG, Wang G, Yi J, Scudino S, Cao FY, Sun JF, Eckert J (2017) Microstructure and thermal expansion behavior of Al-50Si synthesized by selective laser melting. J Alloys Compd 699:548–553. https://doi.org/10.1016/j.jallcom.2016.12.429

    Article  Google Scholar 

  10. Choi HS, Konishi H, Li XC (2012) Al2O3 nanoparticles induced simultaneous refinement and modification of primary and eutectic Si particles in hypereutectic Al–20Si alloy. Mater Sci Eng A 541:159–165. https://doi.org/10.1016/j.msea.2012.01.131

    Article  Google Scholar 

  11. Chen ZN, Kang HJ, Fan GH, Li JH, Lu YP, Jie JC, Zhang YB, Li TJ, Jian XG, Wang TM (2016) Grain refinement of hypoeutectic Al–Si alloys with B. Acta Mater 120:168–178. https://doi.org/10.1016/j.actamat.2016.08.045

    Article  Google Scholar 

  12. McDonald SD, Kazuhiro N, Dahle AK (2004) Eutectic nucleation in Al–Si alloys. Acta Mater 52:4273–4280. https://doi.org/10.1016/j.actamat.2004.05.043

    Article  Google Scholar 

  13. Li B, Wang HW, Jie JC, Wei ZJ (2011) Effects of yttrium and heat treatment on the microstructure and tensile properties of Al–7.5Si–0.5Mg alloy. Mater Des 32:1617–1622. https://doi.org/10.1016/j.matdes.2010.08.040

    Article  Google Scholar 

  14. Li B, Wang HW, Jie JC, Wei ZJ (2011) Microstructure evolution and modification mechanism of the ytterbium modified Al–7.5%Si–0.45%Mg alloys. J Alloys Compd 509:3387–3392. https://doi.org/10.1016/j.jallcom.2010.12.081

    Article  Google Scholar 

  15. Li JH, Wang XD, Ludwig TH, Tsunekawa Y, Arnberg L, Jiang JZ, Schumacher P (2015) Modification of eutectic Si in Al–Si alloys with Eu addition. Acta Mater 84:153–163. https://doi.org/10.1016/j.actamat.2014.10.064

    Article  Google Scholar 

  16. Prukkanon W, Srisukhumbowornchai N, Limmaneevichitr CW (2009) Modification of hypoeutectic Al–Si alloys with scandium. J Alloys Compd 477:454–460. https://doi.org/10.1016/j.jallcom.2008.10.016

    Article  Google Scholar 

  17. Cao FY, Jia YD, Prashanth KG, Ma P, Liu JS, Scudino S, Huang F, Eckert J, Sun JF (2015) Evolution of microstructure and mechanical properties of as-cast Al–50Si alloy due to heat treatment and P modifier content. Mater Des 74:150–156. https://doi.org/10.1016/j.matdes.2015.03.008

    Article  Google Scholar 

  18. Li QL, Xia TD, Lan YF, Zhao WJ, Fan L, Li PF (2013) Effect of in situ γ-Al2O3 particles on the microstructure of hypereutectic Al–20%Si alloy. J Alloys Compd 577:232–236. https://doi.org/10.1016/j.jallcom.2013.04.043

    Article  Google Scholar 

  19. Li QL, Xia TD, Lan YF, Zhao WJ, Fan L, Li PF (2013) Effect of rare earth cerium addition on the microstructure and tensile properties of hypereutectic Al–20%Si alloy. J Alloys Compd 562:25–32. https://doi.org/10.1016/j.jallcom.2013.02.016

    Article  Google Scholar 

  20. Xu CL, Jiang QC, Yang YF, Wang HY, Wang JG (2006) Effect of Nd on primary silicon and eutectic silicon in hypereutectic Al–Si alloy. J Alloys Compd 422:L1–L4. https://doi.org/10.1016/j.jallcom.2005.03.128

    Article  Google Scholar 

  21. Cui C, Schulz A, Schimanski K, Zoch HW (2009) Spray forming of hypereutectic Al–Si alloys. J Mater Process Technol 209:5220–5228. https://doi.org/10.1016/j.jmatprotec.2009.03.009

    Article  Google Scholar 

  22. Ma P, Zou CM, Wang HW, Scudino S, Song KK, Khoshkhoo MS, Wei ZJ, Eckert KU (2013) Structure of GP zones in Al–Si matrix composites solidified under high pressure. Mater Lett 109:1–4. https://doi.org/10.1016/j.matlet.2013.06.075

    Article  Google Scholar 

  23. Prashanth KG, Damodaram R, Scudino S, Wang Z, Rao KP, Eckert J (2014) Friction welding of Al–12Si parts produced by selective laser melting. Mater Des 57:632–637. https://doi.org/10.1016/j.matdes.2014.01.026

    Article  Google Scholar 

  24. Prashanth KG, Scudino S, Eckert J (2017) Defining the tensile properties of Al–12Si parts produced by selective laser melting. Acta Mater 126:25–35. https://doi.org/10.1016/j.actamat.2016.12.044

    Article  Google Scholar 

  25. Olakanmi EO, Cochrane RF, Dalgarno KW (2015) A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci 74:401–477. https://doi.org/10.1016/j.pmatsci.2015.03.002

    Article  Google Scholar 

  26. Martin JH, Yahata BD, Hundley JM, Mayer JA, Schaedler TA, Pollock TM (2017) 3D printing of high-strength aluminium alloys. Nature 549:365–369. https://doi.org/10.1016/j.jallcom.2018.02.272

    Article  Google Scholar 

  27. Ma P, Jia YD, Prashanth KG, Scudino S, Yu ZS, Eckert J (2016) Microstructure and phase formation in Al–20Si–5Fe–3Cu–1Mg synthesized by selective laser melting. J Alloys Compd 657:430–435. https://doi.org/10.1016/j.jallcom.2015.10.119

    Article  Google Scholar 

  28. Olakanmi EO (2013) Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: effect of processing conditions and powder properties. J Mater Process Technol 213:1387–1405. https://doi.org/10.1016/j.jmatprotec.2013.03.009

    Article  Google Scholar 

  29. Chien CW, Lee SL, Lin JC, Jahn MT (2002) Effects of Sip size and volume fraction on properties of Al/Sip composites. Mater Lett 52:334–341. https://doi.org/10.1016/S0167-577X(01)00418-9

    Article  Google Scholar 

  30. Hanemann T, Habschied CLN, Adkins NJE, Attallah MM, Heilmaier M (2019) In-situ alloying of AlSi10Mg + Si using selective laser melting to control the coefficient of thermal expansion. J Alloys Compd 795:8–18. https://doi.org/10.1016/j.jallcom.2019.04.260

    Article  Google Scholar 

  31. Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C, Hague R (2019) 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Prog Mater Sci 106:100578. https://doi.org/10.1016/j.pmatsci.2019.100578

    Article  Google Scholar 

  32. Prashanth KG, Scudino S, Klauss H, Surreddi KB, Löber L, Wang Z, Chaubey AK, Kühn U, Eckert J (2014) Microstructure and mechanical properties of Al-12Si produced by selective laser melting: effect of heat treatment. Mater Sci Eng A 590:153–160. https://doi.org/10.1016/j.msea.2013.10.023

    Article  Google Scholar 

  33. Prashanth KG, Scudino S, Chaubey AK, Loeber L, Wang P, Attar H, Schimansky FP, Pyczak F, Eckert J (2016) Processing of Al-12Si-TNM composites by selective laser melting and evaluation of compressive and wear properties. J Mater Res 31:55–65. https://doi.org/10.1557/jmr.2015.326

    Article  Google Scholar 

  34. Suryawanshi J, Prashanth KG, Scudino S, Eckert J, Prakash O, Ramamurty R (2016) Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta Mater 115:285–294. https://doi.org/10.1016/j.actamat.2016.06.009

    Article  Google Scholar 

  35. Rathod HJ, Nagaraju T, Prashanth KG, Ramamurty U (2019) Tribological properties of selective laser melted Al-12Si alloy. Tribo Int 137:94–101. https://doi.org/10.1016/j.triboint.2019.04.038

    Article  Google Scholar 

  36. Ma P, Prashanth KG, Scudino S, Jia YD, Wang HW, Zou CM, Wei ZJ, Eckert J (2014) Influence of annealing on mechanical properties of Al-20Si processed by selective laser melting. Metals 4:28–36. https://doi.org/10.3390/met4010028

    Article  Google Scholar 

  37. Elomari S, Skibo MD, Sundarrajan A, Richards H (1998) Thermal expansion behavior of particulate metal-matrix composites. Compos Sci Technol 58:369–376. https://doi.org/10.1016/S0266-3538(97)00124-3

    Article  Google Scholar 

  38. Arpón R, Molina JM, Saravanan RA, García-Cordovilla C, Louis E, Narciso J (2003) Thermal expansion behaviour of aluminium/SiC composites with bimodal particle distributions. Acta Mater 51:3145–3156. https://doi.org/10.1016/S1359-6454(03)00126-5

    Article  Google Scholar 

  39. Wei ZJ, Ma P, Wang HW, Zou CM, Scudino S, Song KK, Prashanth KG, Jiang W, Eckert J (2015) The thermal expansion behaviour of SiCp/Al-20Si composites solidified under high pressures. Mater Des 65:387–394. https://doi.org/10.1016/j.matdes.2014.08.070

    Article  Google Scholar 

  40. Ma P, Zou CM, Wang HW, Scudino S, Fu BG, Wei ZJ, Kühn U, Eckert J (2014) Effects of high pressure and SiC content on microstructure and precipitation kinetics of Al-20Si alloy. J Alloys Compd 586:639–644. https://doi.org/10.1016/j.jallcom.2013.10.128

    Article  Google Scholar 

  41. Huber T, Degischer HP, Lefranc G, Schmitt T (2006) Thermal expansion studies on aluminium-matrix composites with different reinforcement architecture of SiC particles. Compos Sci Technol 66:2206–2217. https://doi.org/10.1016/j.compscitech.2005.12.012

    Article  Google Scholar 

  42. Chang JY, Moon I, Choi CS (1998) Refinement of cast microstructure of hypereutectic Al-Si alloys through the addition of rare earth metals. J Mater Process Technol 33:5015–5023. https://doi.org/10.1023/A:1004463125340

    Article  Google Scholar 

  43. Lasagni F, Mingler B, Dumont M, Degischer HP (2008) Precipitation kinetics of Si in aluminium alloys. Mater Sci Eng A 480:383–391. https://doi.org/10.1016/j.msea.2007.07.008

  44. Jia YD, Cao FY, Scudino S, Ma P, Li HC, Yu L, Eckert J, Sun JF (2014) Microstructure and thermal expansion behavior of spray-deposited Al-50Si. Mater Des 57:585–591. https://doi.org/10.1016/j.matdes.2013.12.066

    Article  Google Scholar 

  45. Ren SB, He XB, Qu XH, Humail IS, Li Y (2007) Effect of Mg and Si in the aluminum on the thermo-mechanical properties of pressureless infiltrated SiCp/Al composites. Compos Sci Technol 67:2103–2113. https://doi.org/10.1016/j.compscitech.2006.11.006

    Article  Google Scholar 

  46. Tayebi M, Jozdani M, Mirhadi M (2019) Thermal expansion behaviour of Al-B4C composites by powder metallurgy. J Alloys Compd 809:151753. https://doi.org/10.1016/j.jallcom.2019.151753

    Article  Google Scholar 

  47. Jiang T, Li SJ, Yu C, Fu JY, Wei BW, Luo LL, Xu GM (2019) The evolution on the microstructure and thermal expansion behavior of Al-50Si alloy with different P contents. J Mater Sci-Mater EL 30:6786–6794. https://doi.org/10.1007/s10854-019-00990-1

    Article  Google Scholar 

Download references

Funding

This project is supported by the National Key Research and Development Program of China (2016YFB0700203), the National Natural Science Foundation of China (51971123), the Natural Science Foundation of Shanghai (17ZR1440800). European Regional Development Fund through MOBERC15 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Ma or K. G. Prashanth.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y.D., Zhang, L.B., Ma, P. et al. Thermal expansion behavior of Al–xSi alloys fabricated using selective laser melting. Prog Addit Manuf 5, 247–257 (2020). https://doi.org/10.1007/s40964-020-00130-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-020-00130-w

Keywords

Navigation