Skip to main content
Log in

A new high-temperature perovskite-like magnetic insulator

一种新型高温类钙钛矿磁性绝缘体

  • Letters
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

寻找一种性能良好的磁性绝缘材料是发展新型多功能量子自旋电子器件至关重要的基础, 但是大多数已知的磁性绝缘材料具有居里温度低(< 300 K), 铁磁性和结构对称性差的特点. 本工作中, 我们成功设计并制备了一种新型的磁性绝缘体: Bi8Fe2.8Co0.2-Ti2O20Cl, 它具有包含五层钙钛矿层的层状Sillen-Aurivillius结构. 令人惊讶的是, 此种化合物的居里温度达到了约804 K, 比未掺杂的奈耳温度提高超过300 K. 此外, 由于Sillen层的存在, Bi8Fe2.8-Co0.2Ti2O20Cl具有比所有已知相同Co摩尔比掺杂的Aurivillius氧化物更大的剩余磁化强度. X射线吸收光谱(XAS)和X-光磁性圆二色性(XMCD)光谱分析表明, Bi8Fe2.8Co0.2Ti2O20Cl的铁磁性主要是由Co掺杂引起的FeO6八面体的形变和Fe−O−Co的Dzyaloshinskii-Moriya(D-M)相互作用所致.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Uchida K, Adachi H, Ota T, et al. Observation of longitudinal spinseebeck effect in magnetic insulators. Appl Phys Lett, 2010, 97: 172505

    Article  Google Scholar 

  2. Hirohata A, Takanashi K. Future perspectives for spintronic devices. J Phys D-Appl Phys, 2014, 47: 193001

    Article  Google Scholar 

  3. Zhang SSL, Zhang S. Spin convertance at magnetic interfaces. Phys Rev B, 2012, 86: 214424

    Article  Google Scholar 

  4. Uchida K, Xiao J, Adachi H, et al. Spin Seebeck insulator. Nat Mater, 2010, 9: 894–897

    Article  CAS  Google Scholar 

  5. Lee JH, Fang L, Vlahos E, et al. A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature, 2010, 466: 954–958

    Article  CAS  Google Scholar 

  6. Meng D, Guo H, Cui Z, et al. Strain-induced high-temperature perovskite ferromagnetic insulator. Proc Natl Acad Sci USA, 2018, 115: 2873–2877

    Article  CAS  Google Scholar 

  7. Mauger A, Godart C. The magnetic, optical, and transport properties of representatives of a class of magnetic semiconductors: The europium chalcogenides. Phys Rep, 1986, 141: 51–176

    Article  CAS  Google Scholar 

  8. Sun S, Huang Y, Wang G, et al. Nanoscale structural modulation and enhanced room-temperature multiferroic properties. Nanoscale, 2014, 6: 13494–13500

    Article  CAS  Google Scholar 

  9. Lei Z, Chen T, Li W, et al. Cobalt-substituted seven-layer Aurivillius Bi8Fe4Ti3O24 ceramics: Enhanced ferromagnetism and ferroelectricity. Crystals, 2017, 7: 76

    Article  Google Scholar 

  10. Zhang DL, Huang WC, Chen ZW, et al. Structure evolution and multiferroic properties in cobalt doped Bi4NdTi3Fe1−xCoxO15− Bi3NdTi2Fe1−xCoxO12−δ intergrowth aurivillius compounds. Sci Rep, 2017, 7: 43540

    Article  CAS  Google Scholar 

  11. Chen Z, Hong T, Wang Z, et al. Anisotropic magnetic property and exchange bias effect in a homogeneous Sillen-Aurivillius layered oxide. J Eur Ceramic Soc, 2019, 39: 2685–2691

    Article  CAS  Google Scholar 

  12. Liu S, Miiller W, Liu Y, et al. Sillen-Aurivillius intergrowth phases as templates for naturally layered multiferroics. Chem Mater, 2012, 24: 3932–3942

    Article  CAS  Google Scholar 

  13. Kikkawa T, Uchida K, Shiomi Y, et al. Longitudinal spin Seebeck effect free from the proximity Nernst effect. Phys Rev Lett, 2013, 110: 067207

    Article  CAS  Google Scholar 

  14. Qu D, Huang SY, Hu J, et al. Intrinsic spin Seebeck effect in Au/YIG. Phys Rev Lett, 2013, 110: 067206

    Article  CAS  Google Scholar 

  15. Cao G, Xin Y, Alexander CS, et al. Anomalous magnetic and transport behavior in the magnetic insulator Sr3Ir2O7. Phys Rev B, 2002, 66: 214412

    Article  Google Scholar 

  16. Cherepanov V, Kolokolov I, L’vov V. The saga of YIG: Spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet. Phys Rep, 1993, 229: 81–144

    Article  CAS  Google Scholar 

  17. Ma EY, Cui YT, Ueda K, et al. Mobile metallic domain walls in an all-in-all-out magnetic insulator. Science, 2015, 350: 538–541

    Article  CAS  Google Scholar 

  18. Barkhausen H. Zwei mit Hilfe der neuen Verstärker entdeckte Erscheinungen. Phys Z, 1919, 20: 401–403

    Google Scholar 

  19. Mao XY, Zou BW, Sun H, et al. Effects of co-doping on multiferroic properties of Bi6Fe2−xCoxTi3O18 ceramics. Acta Phys Sin, 2015, 64: 217701

    Google Scholar 

  20. Cai MQ, Liu JC, Yang GW, et al. First-principles study of structural, electronic, and multiferroic properties in BiCoO3. J Chem Phys, 2007, 126: 154708

    Article  Google Scholar 

  21. Jartych E, Pikula T, Mazurek M, et al. Antiferromagnetic spin glass-like behavior in sintered multiferroic Aurivillius Bim+1Ti3Fem−3O3m+3 compounds. J Magn Magn Mater, 2013, 342: 27–34

    Article  CAS  Google Scholar 

  22. Xue X, Tan G, Liu W, et al. Structural, electrical, and magnetic properties of multiferroic Bi1−xGd Fe0.97Co0.03O3 thin films. J Alloys Compd, 2015, 622: 477–482

    Article  CAS  Google Scholar 

  23. Denisov VI, Denisova IP, Sokolov VA. Using the concept of natural geometry in the nonlinear electrodynamics of the vacuum. Theor Math Phys, 2012, 61: 1321–1327

    Article  Google Scholar 

  24. Dzyaloshinsky I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J Phys Chem Solids, 1958, 4: 241–255

    Article  CAS  Google Scholar 

  25. Chen CT, Idzerda YU, Lin HJ, et al. Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys Rev Lett, 1995, 75: 152–155

    Article  CAS  Google Scholar 

  26. Vayssieres L, Sathe C, Butorin SM, et al. One-dimensional quantum-confinement effect in α-Fe2O3 ultrafine nanorod arrays. Adv Mater, 2005, 17: 2320–2323

    Article  CAS  Google Scholar 

  27. de Groot FMF, Glatzel P, Bergmann U, et al. 1s2p resonant inelastic X-ray scattering of iron oxides. J Phys Chem B, 2005, 68: 20751–20762

    Article  Google Scholar 

  28. Thole BT, Carra P, Sette F, et al. X-ray circular dichroism as a probe of orbital magnetization. Phys Rev Lett, 1992, 68: 1943–1946

    Article  CAS  Google Scholar 

  29. Carra P, Thole BT, Altarelli M, et al. X-ray circular dichroism and local magnetic fields. Phys Rev Lett, 1993, 70: 694–697

    Article  CAS  Google Scholar 

  30. Bocquet AE, Saitoh T, Mizokawa T, et al. Systematics in the electronic structure of 3d transition-metal compounds. Solid State Commun, 1992, 52: 11–15

    Article  Google Scholar 

  31. Teramura Y, Tanaka A, Jo T. Effect of coulomb interaction on the X-ray magnetic circular dichroism spin sum rule in 3d transition elements. J Phys Soc Jpn, 1996, 65: 1053–1055

    Article  CAS  Google Scholar 

  32. Stöhr J, König H. Determination of spin- and orbital-moment anisotropies in transition metals by angle-dependent X-ray magnetic circular dichroism. Phys Rev Lett, 1995, 75: 3748–3751

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFA0401004), the Chinese Universities Scientific Fund (CUSF, WK2310000055), and the External Cooperation Program of BIC (Chinese Academy of Sciences, 211134KYSB20130017). X-ray Magnetic Circular Dichroism (XMCD) measurements were performed at the beamline 08U-a in the Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Peng R, Wang J gave the direction of the experiments; Tang H and Huang H conducted the experiments together; Chen Z, Fu Z and Huang J participated in the discussion; Lu Y gave suggestions to the experiments and revised the manuscript with Tang H and Peng R.

Corresponding authors

Correspondence to Ranran Peng  (彭冉冉) or Yalin Lu  (陆亚林).

Additional information

Conflict of interest The authors declare that they have no conflict of interest.

Haowen Tang is a Master student from the University of Science and Technology of China (USTC). He graduated from the Department of Materials Science and Engineering of the USTC with a Bachelor’s degree in 2017. His research interest is focused on new layered multiferroic materials.

Ranran Peng is an associate professor at the USTC. She graduated from the Department of Materials Science and Engineering of the USTC in 2003 with a PhD degree. She did Post-doctoral research at Tsinghua University from 2003 to 2005. From 2011 to 2012, she was a visiting scholar at Pennsylvania State University. She has been teaching at the USTC since 2005. Her main research is focused on solid oxide fuel cells and new layered multiferroic materials.

Yalin Lu is a full professor of the USTC. He is now Director of National Synchrotron Radiation Laboratory, Deputy Director of Hefei Science Center. Before joining the USTC, he was a visiting professor at Lawrence Berkeley National Laboratory (1996–1998), a research professor in electrical engineering at Tufts University (1998–2000) and a full professor in physics at the US Air Force Academy (2003–2012). His research group in the USTC works on materials for energy conversion, THz optics and materials, optoelectronics, and complex oxides materials physics.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Chen, Z., Wang, J. et al. A new high-temperature perovskite-like magnetic insulator. Sci. China Mater. 63, 1330–1336 (2020). https://doi.org/10.1007/s40843-020-1309-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1309-2

Navigation