Skip to main content
Log in

Design of a Reactor Cell for Modulated Excitation Raman and Diffuse Reflectance Studies of Selective Catalytic Reduction Catalysts

  • Special Issue: In Recognition of Professor Wolfgang Grünert's Contributions to the Science and Fundamentals of Selective Catalytic Reduction of NOx
  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

Despite the large pool of spectroscopic studies about selective catalytic reduction (SCR), transient response experiments have not yet been fully utilized to extract key mechanistic and kinetic insights. Here, we describe the construction and performance characteristics of a spectroscopic cell that can be used for such an experimental design. The rapid gas exchange in the reaction chamber of the cell makes it amenable to modulated excitation (ME) experimentation. We show case studies wherein this cell was used for Raman, visible, and infrared spectroscopy under ME conditions to investigate the SCR mechanism over three of the most industrially relevant SCR catalysts today—V2O5/TiO2, Cu-SSZ-13, and Fe-ZSM-5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kummer, J.T.: Catalysts for automobile emission control. Prog. Energy Combust. Sci. 6(2), 177–199 (1980)

    Google Scholar 

  2. Cooper, B.J.: Challenges in emission control catalysis for the next decade. Platin. Met. Rev. 38(1), 2–10 (1994)

    Google Scholar 

  3. Jobson, E.: Future challenges in automotive emission control. Top. Catal. 28(1), 191–199 (2004)

    Google Scholar 

  4. Johnson, T.: Vehicular emissions in review. SAE Int. J. Engines. 9(2), 1258–1275 (2016)

    Google Scholar 

  5. Tayyeb Javed, M., Irfan, N., Gibbs, B.M.: Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. J. Environ. Manag. 83(3), 251–289 (2007)

    Google Scholar 

  6. Cheng, X., Bi, X.T.: A review of recent advances in selective catalytic NOx reduction reactor technologies. Particuology. 16, 1–18 (2014)

    Google Scholar 

  7. Roy, S., Baiker, A.: NOx storage−reduction catalysis: From mechanism and materials properties to storage−reduction performance. Chem. Rev. 109(9), 4054–4091 (2009)

    Google Scholar 

  8. Kröcher, O.: Aspects of catalyst development for mobile urea-SCR systems—From vanadia-titania catalysts to metal-exchanged zeolites. In: Granger, P., Pârvulescu, V.I. (eds.) Studies in Surface Science and Catalysis, vol. 171, pp. 261–289. Elsevier (2007)

  9. Nova, I., Tronconi, E.: Urea-SCR technology for deNOx after treatment of diesel exhausts. Springer, New York (2014)

    Google Scholar 

  10. Ciardelli, C., Nova, I., Tronconi, E., Chatterjee, D., Bandl-Konrad, B.: A “Nitrate Route” for the low temperature “Fast SCR” reaction over a V2O5–WO3/TiO2 commercial catalyst. Chem. Commun. 23, 2718–2719 (2004)

    Google Scholar 

  11. Amiridis, M., Wachs, I., Deo, G., Jehng, J.-M., Soung Kim, D.: Reactivity of V2O5 catalysts for the selective catalytic reduction of NO by NH3: influence of Vanadia loading, H2O, and SO2. J. Catal. 161(1), 247–253 (1996)

    Google Scholar 

  12. Kharas, K.C.C., Robota, H.J., Liu, D.J.: Deactivation in Cu-ZSM-5 lean-burn catalysts. Appl. Catal. B Environ. 2(2), 225–237 (1993)

    Google Scholar 

  13. Kwak, J.H., Tonkyn, R.G., Kim, D.H., Szanyi, J., Peden, C.H.F.: Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J. Catal. 275(2), 187–190 (2010)

    Google Scholar 

  14. Wang, J., Zhao, H., Haller, G., Li, Y.: Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts. Appl. Catal. B Environ. 202, 346–354 (2017)

    Google Scholar 

  15. Kamasamudram, K., Currier, N., Szailer, T., Yezerets, A.: Why Cu- and Fe-zeolite SCR catalysts behave differently at low temperatures. SAE Int. J. Fuels Lubr. 3(1), 664–672 (2010)

    Google Scholar 

  16. Colombo, M., Nova, I., Tronconi, E.: A comparative study of the NH3-SCR reactions over a Cu-zeolite and a Fe-zeolite catalyst. Catal. Today. 151(3), 223–230 (2010)

    Google Scholar 

  17. Ramis, G., Busca, G., Bregani, F., Forzatti, P.: Fourier transform-infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on vanadia-titania and mechanism of selective catalytic reduction. Appl. Catal. 64, 259–278 (1990)

    Google Scholar 

  18. Topsøe, N.-Y.: Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy. Science. 265(5176), 1217–1219 (1994)

    Google Scholar 

  19. Janssens, T.V.W., Falsig, H., Lundegaard, L.F., Vennestrøm, P.N.R., Rasmussen, S.B., Moses, P.G., Giordanino, F., Borfecchia, E., Lomachenko, K.A., Lamberti, C., Bordiga, S., Godiksen, A., Mossin, S., Beato, P.: A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia. ACS Catal. 5(5), 2832–2845 (2015)

    Google Scholar 

  20. Müller, P., Hermans, I.: Applications of modulation excitation spectroscopy in heterogeneous catalysis. Ind. Eng. Chem. Res. 56(5), 1123–1136 (2017)

    Google Scholar 

  21. Meunier, F.C.: The design and testing of kinetically-appropriate operando spectroscopic cells for investigating heterogeneous catalytic reactions. Chem. Soc. Rev. 39(12), 4602–4614 (2010)

    Google Scholar 

  22. Srinivasan, P.D., Nitz, S.R., Stephens, K.J., Atchison, E., Bravo-Suarez, J.J.: Modified Harrick reaction cell for in situ/operando fiber optics diffuse reflectance UV–visible spectroscopic characterization of catalysts. Appl. Catal. A Gen. 561, 7–18 (2018)

    Google Scholar 

  23. Patil, B.S., Srinivasan, P.D., Atchison, E., Zhu, H., Bravo-Suárez, J.J.: Design, modelling, and application of a low void-volume in situ diffuse reflectance spectroscopic reaction cell for transient catalytic studies. React. Chem. Eng. 4(4), 667–678 (2019)

    Google Scholar 

  24. Chiarello, G.L., Nachtegaal, M., Marchionni, V., Quaroni, L., Ferri, D.: Adding diffuse reflectance infrared Fourier transform spectroscopy capability to extended x-ray-absorption fine structure in a new cell to study solid catalysts in combination with a modulation approach. Rev. Sci. Instrum. 85(7), 074102 (2014)

    Google Scholar 

  25. Schubert, M.M., Häring, T.P., Bräth, G., Gasteiger, H.A., Behm, R.J.: New DRIFTS cell design for the simultaneous acquisition of IR spectra and kinetic data using on-line product analysis. Appl. Spectrosc. 55(11), 1537–1543 (2001)

    Google Scholar 

  26. Bansode, A., Guilera, G., Cuartero, V., Simonelli, L., Avila, M., Urakawa, A.: Performance and characteristics of a high pressure, high temperature capillary cell with facile construction for operando x-ray absorption spectroscopy. Rev. Sci. Instrum. 85(8), 084105 (2014)

    Google Scholar 

  27. Dal Santo, V., Dossi, C., Fusi, A., Psaro, R., Mondelli, C., Recchia, S.: Fast transient infrared studies in material science: Development of a novel low dead-volume, high temperature DRIFTS cell. Talanta. 66(3), 674–682 (2005)

    Google Scholar 

  28. Wachs, I.E.: Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts. Catal. Today. 27(3), 437–455 (1996)

    Google Scholar 

  29. Weckhuysen, B.M., Schoonheydt, R.A.: Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts. Catal. Today. 49(4), 441–451 (1999)

    Google Scholar 

  30. Lamberti, C., Zecchina, A., Groppo, E., Bordiga, S.: Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chem. Soc. Rev. 39(12), 4951–5001 (2010)

    Google Scholar 

  31. Marberger, A., Ferri, D., Elsener, M., Kröcher, O.: The significance of Lewis acid sites for the selective catalytic reduction of nitric oxide on vanadium-based catalysts. Angew. Chem. Int. Ed. 55(39), 11989–11994 (2016)

    Google Scholar 

  32. Sridhar, M., Ferri, D., van Bokhoven, J.A., Kröcher, O.: Water-assisted oxygen activation during gold-catalyzed formic acid decomposition under SCR-relevant conditions. J. Catal. 349, 197–207 (2017)

    Google Scholar 

  33. Nuguid, R.J.G., Ferri, D., Marberger, A., Nachtegaal, M., Kröcher, O.: Modulated excitation Raman spectroscopy of V2O5/TiO2: Mechanistic insights into the selective catalytic reduction of NO with NH3. ACS Catal. 9(8), 6814–6820 (2019)

  34. Fogler, H.S.: Distribution of residence times for chemical reactors. In: Elements of Chemical Reaction Engineering, pp. 867–944. Prentice Hall, Upper Saddle River (2005)

  35. Marberger, A., Petrov, A.W., Steiger, P., Elsener, M., Kröcher, O., Nachtegaal, M., Ferri, D.: Time-resolved copper speciation during selective catalytic reduction of NO on Cu-SSZ-13. Nat. Catal. 1(3), 221–227 (2018)

    Google Scholar 

  36. Baurecht, D., Fringeli, U.P.: Quantitative modulated excitation Fourier transform infrared spectroscopy. Rev. Sci. Instrum. 72(10), 3782–3792 (2001)

    Google Scholar 

  37. Ohsaka, T., Izumi, F., Fujiki, Y.: Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 7(6), 321–324 (1978)

    Google Scholar 

  38. Frank, O., Zukalova, M., Laskova, B., Kürti, J., Koltai, J., Kavan, L.: Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18). Phys. Chem. Chem. Phys. 14(42), 14567–14572 (2012)

    Google Scholar 

  39. Went, G.T., Oyama, S.T., Bell, A.T.: Laser Raman spectroscopy of supported vanadium oxide catalysts. J. Phys. Chem. 94(10), 4240–4246 (1990)

    Google Scholar 

  40. Wachs, I.E., Weckhuysen, B.M.: Structure and reactivity of surface vanadium oxide species on oxide supports. Appl. Catal. A Gen. 157(1), 67–90 (1997)

    Google Scholar 

  41. Tronconi, E., Nova, I., Ciardelli, C., Chatterjee, D., Weibel, M.: Redox features in the catalytic mechanism of the “standard” and “fast” NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods. J. Catal. 245(1), 1–10 (2007)

    Google Scholar 

  42. Giakoumelou, I., Fountzoula, C., Kordulis, C., Boghosian, S.: Molecular structure and catalytic activity of V2O5/TiO2 catalysts for the SCR of NO by NH3: in situ Raman spectra in the presence of O2, NH3, NO, H2, H2O, and SO2. J. Catal. 239(1), 1–12 (2006)

    Google Scholar 

  43. Negri, C., Signorile, M., Porcaro, N.G., Borfecchia, E., Berlier, G., Janssens, T.V.W., Bordiga, S.: Dynamic CuII/CuI speciation in Cu-CHA catalysts by in situ diffuse reflectance UV–vis-NIR spectroscopy. Appl. Catal. A Gen. 578, 1–9 (2019)

    Google Scholar 

  44. Nanba, T., Chino, T., Masukawa, S., Uchisawa, J., Obuchi, A.: Total oxidation of toluene over Cu/TiO2/SiO2. Bull. Chem. Soc. Jpn. 86(4), 534–539 (2013)

  45. Long, R.Q., Yang, R.T.: Characterization of Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia. J. Catal. 194(1), 80–90 (2000)

    Google Scholar 

  46. Schwidder, M., Heikens, S., De Toni, A., Geisler, S., Berndt, M., Brückner, A., Grünert, W.: The role of NO2 in the selective catalytic reduction of nitrogen oxides over Fe-ZSM-5 catalysts: Active sites for the conversion of NO and of NO/NO2 mixtures. J. Catal. 259(1), 96–103 (2008)

    Google Scholar 

  47. Devadas, M., Kröcher, O., Elsener, M., Wokaun, A., Mitrikas, G., Söger, N., Pfeifer, M., Demel, Y., Mussmann, L.: Characterization and catalytic investigation of Fe-ZSM5 for urea-SCR. Catal. Today 119(1), 137–144 (2007)

    Google Scholar 

  48. Elzey, S., Mubayi, A., Larsen, S.C., Grassian, V.H.: FTIR study of the selective catalytic reduction of NO2 with ammonia on nanocrystalline NaY and CuY. J. Mol. Catal. A: Chem. 285(1), 48–57 (2008)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Swiss National Science Foundation (SNF, Project #200021_172669/1). The authors are grateful to H. Altorfer for the cell drawings, M. Hottinger for the cell fabrication, and P. Hottiger for the electrical connections. This project was carried out in the framework of the Swiss Competence Center for Energy Research (SCCER) BIOSWEET program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Ferri.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1.00 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuguid, R.J.G., Ferri, D. & Kröcher, O. Design of a Reactor Cell for Modulated Excitation Raman and Diffuse Reflectance Studies of Selective Catalytic Reduction Catalysts. Emiss. Control Sci. Technol. 5, 307–316 (2019). https://doi.org/10.1007/s40825-019-00141-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-019-00141-2

Keywords

Navigation