Skip to main content

Advertisement

Log in

Chronic Kidney Disease in Children: Risk-Based Stratification and Treatment

  • Pediatric Nephrology (BP Dixon and E Nehus, Section Editors)
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Purpose of review

This paper provides a review of the epidemiology, classification, risk-based stratification, and identification of traditional and novel risk factors for chronic kidney disease (CKD) progression in children. Current treatment strategies designed to halt progression and best practices regarding vascular access preservation are discussed.

Recent findings

Substantial progress in CKD diagnosis has been made, particularly in the refinement of glomerular filtration rate (GFR) estimating equations in children. A number of new risk factors for CKD progression are described, including genetic underpinnings of CKD. Efforts designed to risk-stratify those children at highest risk for progression to ESRD and to define modifiable risk factors have been undertaken by collaborative research initiatives.

Summary

The management of pediatric CKD comprises appropriate diagnosis and classification of CKD severity through the use of updated eGFR estimating equations, and amelioration of existing risk factors for progression. The most important factors, hypertension and proteinuria, are validated endpoints for treatment with medications that target renin-angiotensin-aldosterone system blockade. Optimal blood pressure management is also essential to limit the frequency of cardiovascular disease. Several multicenter collaborative studies have shed light on the myriad of comorbidities experienced by children with CKD, in addition to elucidating risk determinants for CKD progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hazzan AD, Halinski C, Agoritsas S, Fishbane S, DeVita MV. Epidemiology and challenges to the management of advanced CKD. Adv Chronic Kidney Dis. 2016;23(4):217–21. https://doi.org/10.1053/j.ackd.2016.04.005.

    Article  PubMed  Google Scholar 

  2. Obrador GT, Pereira BJ, Kausz AT. Chronic kidney disease in the United States: an underrecognized problem. Semin Nephrol. 2002;22(6):441–8.

    Article  PubMed  Google Scholar 

  3. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260–72. https://doi.org/10.1016/S0140-6736(13)60687-X.

    Article  PubMed  Google Scholar 

  4. Harambat J, van Stralen KJ, Kim JJ, Tizard EJ. Epidemiology of chronic kidney disease in children. Pediatr Nephrol. 2012;27(3):363–73. https://doi.org/10.1007/s00467-011-1939-1.

    Article  PubMed  Google Scholar 

  5. • Saran R, Robinson B, Abbott KC, Agodoa LYC, Bhave N, Bragg-Gresham J, et al. US renal data system 2017 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2018;71(3S1):A7. https://doi.org/10.1053/j.ajkd.2018.01.002 Annual data report of the United States Renal Data System which is a national registry of ESRD patients, and provides some of the highest-quality and most comprehensive epidemiological data regarding adults and children with ESRD.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mitsnefes MM. Cardiovascular disease in children with chronic kidney disease. J Am Soc Nephrol. 2012;23(4):578–85. https://doi.org/10.1681/ASN.2011111115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Parekh RS, Carroll CE, Wolfe RA, Port FK. Cardiovascular mortality in children and young adults with end-stage kidney disease. J Pediatr. 2002;141(2):191–7. https://doi.org/10.1067/mpd.2002.125910.

    Article  CAS  PubMed  Google Scholar 

  8. Baek HS, Kang HG, Choi HJ, Cheong HI, Ha IS, Han KH, et al. Health-related quality of life of children with pre-dialysis chronic kidney disease. Pediatr Nephrol. 2017;32(11):2097–105. https://doi.org/10.1007/s00467-017-3721-5.

    Article  PubMed  Google Scholar 

  9. Greenbaum LA, Warady BA, Furth SL. Current advances in chronic kidney disease in children: growth, cardiovascular, and neurocognitive risk factors. Semin Nephrol. 2009;29(4):425–34. https://doi.org/10.1016/j.semnephrol.2009.03.017.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shroff R, Ledermann S. Long-term outcome of chronic dialysis in children. Pediatr Nephrol. 2009;24(3):463–74. https://doi.org/10.1007/s00467-007-0700-2.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kidney Disease Improving Global Outcomes. Chapter 1: definition and classification of CKD. Kidney Int Suppl. 2013;3(1):19–62. https://doi.org/10.1038/kisup.2012.64.

    Article  Google Scholar 

  12. Hogg RJ, Furth S, Lemley KV, Portman R, Schwartz GJ, Coresh J, et al. National Kidney Foundation’s kidney disease outcomes quality initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification. Pediatrics. 2003;111(6 Pt 1):1416–21.

    Article  PubMed  Google Scholar 

  13. Weidemann DK, Warady BW. Chapter 48: kidney diseases in infants and children. In: Gilbert SJ, Weiner DE, editors. National Kidney Foundation’s primer on kidney diseases. 7th ed. Philadelphia, PA: Elsevier/Saunders; 2017.

    Google Scholar 

  14. Geary DF, Schaefer F. Comprehensive pediatric nephrology. Philadelphia, PA: Mosby/Elsevier; 2008.

    Google Scholar 

  15. Ardissino G, Dacco V, Testa S, Bonaudo R, Claris-Appiani A, Taioli E, et al. Epidemiology of chronic renal failure in children: data from the ItalKid project. Pediatrics. 2003;111(4 Pt 1):e382–7.

    Article  PubMed  Google Scholar 

  16. Staples AO, Greenbaum LA, Smith JM, Gipson DS, Filler G, Warady BA, et al. Association between clinical risk factors and progression of chronic kidney disease in children. Clin J Am Soc Nephrol. 2010;5(12):2172–9. https://doi.org/10.2215/CJN.07851109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wong CJ, Moxey-Mims M, Jerry-Fluker J, Warady BA, Furth SL. CKiD (CKD in children) prospective cohort study: a review of current findings. Am J Kidney Dis. 2012;60(6):1002–11. https://doi.org/10.1053/j.ajkd.2012.07.018.

    Article  PubMed  PubMed Central  Google Scholar 

  18. • Mian AN, Schwartz GJ. Measurement and estimation of glomerular filtration rate in children. Adv Chronic Kidney Dis. 2017;24(6):348–56. https://doi.org/10.1053/j.ackd.2017.09.011 Comprehensive review examining measurement and estimation of GFR in children, with particular attention to historical methods, thorough review of contemporary estimating equations for children, and discussion on refinement and limitations of equations.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1976;58(2):259–63.

    CAS  PubMed  Google Scholar 

  20. Counahan R, Chantler C, Ghazali S, Kirkwood B, Rose F, Barratt TM. Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Dis Child. 1976;51(11):875–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. •• Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–37. https://doi.org/10.1681/ASN.2008030287 High-impact paper which provides a new GFR estimating equation for children with CKD derived from 349 children enrolled in the Chronic Kidney Disease in Children (CKiD) study based on measured GFR using the plasma disappearance of iohexol; current GFR estimating equation recommended for clinical and research applications.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schwartz GJ, Schneider MF, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady BA, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012;82(4):445–53. https://doi.org/10.1038/ki.2012.169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fadrowski JJ, Neu AM, Schwartz GJ, Furth SL. Pediatric GFR estimating equations applied to adolescents in the general population. Clin J Am Soc Nephrol. 2011;6(6):1427–35. https://doi.org/10.2215/CJN.06460710.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ng DK, Schwartz GJ, Schneider MF, Furth SL, Warady BA. Combination of pediatric and adult formulas yield valid glomerular filtration rate estimates in young adults with a history of pediatric chronic kidney disease. Kidney Int. 2018;94(1):170–7. https://doi.org/10.1016/j.kint.2018.01.034.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pottel H, Hoste L, Martens F. A simple height-independent equation for estimating glomerular filtration rate in children. Pediatr Nephrol. 2012;27(6):973–9. https://doi.org/10.1007/s00467-011-2081-9.

    Article  PubMed  Google Scholar 

  27. Pottel H. Measuring and estimating glomerular filtration rate in children. Pediatr Nephrol. 2017;32(2):249–63. https://doi.org/10.1007/s00467-016-3373-x.

    Article  PubMed  Google Scholar 

  28. den Bakker E, Gemke R, Pottel H, van Wijk JAE, Hubeek I, Stoffel-Wagner B, et al. Estimation of GFR in children using rescaled beta-trace protein. Clin Chim Acta. 2018;486:259–64. https://doi.org/10.1016/j.cca.2018.08.021.

    Article  CAS  Google Scholar 

  29. Wuhl E, van Stralen KJ, Verrina E, Bjerre A, Wanner C, Heaf JG, et al. Timing and outcome of renal replacement therapy in patients with congenital malformations of the kidney and urinary tract. Clin J Am Soc Nephrol. 2013;8(1):67–74. https://doi.org/10.2215/CJN.03310412.

    Article  PubMed  Google Scholar 

  30. • Warady BA, Abraham AG, Schwartz GJ, Wong CS, Munoz A, Betoko A, et al. Predictors of rapid progression of glomerular and nonglomerular kidney disease in children and adolescents: the chronic kidney disease in children (CKiD) cohort. Am J Kidney Dis. 2015;65(6):878–88. https://doi.org/10.1053/j.ajkd.2015.01.008 Prospective evaluation of 496 CKiD participants examining risk factors for rapid progression to composite event of RRT or 50% decline in GFR which could that important predictors for progression include proteinuria, hypertension, and hypoalbuminemia for both glomerular and nonglomerular patients, with additional risk factors of dyslipidemia, male gender, and anemia in the non-glomerular group.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fathallah-Shaykh SA, Flynn JT, Pierce CB, Abraham AG, Blydt-Hansen TD, Massengill SF, et al. Progression of pediatric CKD of nonglomerular origin in the CKiD cohort. Clin J Am Soc Nephrol. 2015;10(4):571–7. https://doi.org/10.2215/CJN.07480714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Furth SL, Pierce C, Hui WF, White CA, Wong CS, Schaefer F, et al. Estimating time to ESRD in children with CKD. Am J Kidney Dis. 2018;71(6):783–92. https://doi.org/10.1053/j.ajkd.2017.12.011.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Oliveira EA, Mak RH. Progression of chronic kidney disease in children - role of glomerular hemodynamics and interstitial fibrosis. Curr Opin Pediatr. 2018;30(2):220–7. https://doi.org/10.1097/MOP.0000000000000594.

    Article  PubMed  Google Scholar 

  34. Flynn JT, Mitsnefes M, Pierce C, Cole SR, Parekh RS, Furth SL, et al. Blood pressure in children with chronic kidney disease: a report from the chronic kidney disease in children study. Hypertension. 2008;52(4):631–7. https://doi.org/10.1161/HYPERTENSIONAHA.108.110635.

    Article  CAS  PubMed  Google Scholar 

  35. Furth SL, Abraham AG, Jerry-Fluker J, Schwartz GJ, Benfield M, Kaskel F, et al. Metabolic abnormalities, cardiovascular disease risk factors, and GFR decline in children with chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(9):2132–40. https://doi.org/10.2215/CJN.07100810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Samuels J, Ng D, Flynn JT, Mitsnefes M, Poffenbarger T, Warady BA, et al. Ambulatory blood pressure patterns in children with chronic kidney disease. Hypertension. 2012;60(1):43–50. https://doi.org/10.1161/HYPERTENSIONAHA.111.189266.

    Article  CAS  PubMed  Google Scholar 

  37. Barletta GM, Pierce C, Mitsnefes M, Samuels J, Warady BA, Furth S, et al. Is blood pressure improving in children with chronic kidney disease? A Period Anal Hyperten. 2018;71(3):444–50. https://doi.org/10.1161/HYPERTENSIONAHA.117.09649.

    Article  CAS  Google Scholar 

  38. Ardissino G, Testa S, Dacco V, Vigano S, Taioli E, Claris-Appiani A, et al. Proteinuria as a predictor of disease progression in children with hypodysplastic nephropathy. Data from the Ital kid project. Pediatr Nephrol. 2004;19(2):172–7. https://doi.org/10.1007/s00467-003-1268-0.

    Article  PubMed  Google Scholar 

  39. Ishikura K, Uemura O, Hamasaki Y, Ito S, Wada N, Hattori M, et al. Progression to end-stage kidney disease in Japanese children with chronic kidney disease: results of a nationwide prospective cohort study. Nephrol Dial Transplant. 2014;29(4):878–84. https://doi.org/10.1093/ndt/gfu012.

    Article  CAS  PubMed  Google Scholar 

  40. Wong CS, Pierce CB, Cole SR, Warady BA, Mak RH, Benador NM, et al. Association of proteinuria with race, cause of chronic kidney disease, and glomerular filtration rate in the chronic kidney disease in children study. Clin J Am Soc Nephrol. 2009;4(4):812–9. https://doi.org/10.2215/CJN.01780408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. •• Wuhl E, Trivelli A, Picca S, Litwin M, Peco-Antic A, et al. For the ESCAPE trial group. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;361(17):1639–50. https://doi.org/10.1056/NEJMoa0902066 Seminal paper and one of few interventional trials in pediatric CKD which demonstrated the importance of strict blood pressure control in children with CKD to delay progression.

    Article  PubMed  Google Scholar 

  42. • Ruggajo P, Skrunes R, Svarstad E, Skjaerven R, Reisaether AV, Vikse BE. Familial Factors, Low Birth Weight, and Development of ESRD: A Nationwide Registry Study. Am J Kidney Dis. 2016;67(4):601–8. https://doi.org/10.1053/j.ajkd.2015.11.015 Retrospective registry-based national birth cohort registry of Norway linked to a national database of ESRD patients which revealed that a history of low birth weight and small for gestational age were associated with a higher risk for ESRD in the first 40 years of life.

    Article  PubMed  Google Scholar 

  43. Abitbol CL, Chandar J, Rodriguez MM, Berho M, Seeherunvong W, Freundlich M, et al. Obesity and preterm birth: additive risks in the progression of kidney disease in children. Pediatr Nephrol. 2009;24(7):1363–70. https://doi.org/10.1007/s00467-009-1120-2.

    Article  PubMed  Google Scholar 

  44. Schreuder MF, Nauta J. Prenatal programming of nephron number and blood pressure. Kidney Int. 2007;72(3):265–8. https://doi.org/10.1038/sj.ki.5002307.

    Article  CAS  PubMed  Google Scholar 

  45. Gonzalez Celedon C, Bitsori M, Tullus K. Progression of chronic renal failure in children with dysplastic kidneys. Pediatr Nephrol. 2007;22(7):1014–20. https://doi.org/10.1007/s00467-007-0459-5.

    Article  PubMed  Google Scholar 

  46. Ardissino G, Testa S, Dacco V, Paglialonga F, Vigano S, Felice-Civitillo C, et al. Puberty is associated with increased deterioration of renal function in patients with CKD: data from the ItalKid project. Arch Dis Child. 2012;97(10):885–8. https://doi.org/10.1136/archdischild-2011-300685.

    Article  PubMed  Google Scholar 

  47. Gunta SS, Mak RH. Is obesity a risk factor for chronic kidney disease in children? Pediatr Nephrol. 2013;28(10):1949–56. https://doi.org/10.1007/s00467-012-2353-z.

    Article  PubMed  Google Scholar 

  48. Rodenbach KE, Schneider MF, Furth SL, Moxey-Mims MM, Mitsnefes MM, Weaver DJ, et al. Hyperuricemia and progression of CKD in children and adolescents: the chronic kidney disease in children (CKiD) cohort study. Am J Kidney Dis. 2015;66(6):984–92. https://doi.org/10.1053/j.ajkd.2015.06.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weidemann DK, Weaver VM, Fadrowski JJ. Toxic environmental exposures and kidney health in children. Pediatr Nephrol. 2016;31(11):2043–54. https://doi.org/10.1007/s00467-015-3222-3.

    Article  PubMed  Google Scholar 

  50. Staples A, Wong C. Risk factors for progression of chronic kidney disease. Curr Opin Pediatr. 2010;22(2):161–9. https://doi.org/10.1097/MOP.0b013e328336ebb0.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tullus K. Dyslipidemia in children with CKD: should we treat with statins? Pediatr Nephrol. 2012;27(3):357–62. https://doi.org/10.1007/s00467-011-1872-3.

    Article  PubMed  Google Scholar 

  52. Harambat J, Kunzmann K, Azukaitis K, Bayazit AK, Canpolat N, Doyon A, et al. Metabolic acidosis is common and associates with disease progression in children with chronic kidney disease. Kidney Int. 2017;92(6):1507–14. https://doi.org/10.1016/j.kint.2017.05.006.

    Article  CAS  PubMed  Google Scholar 

  53. Shroff R, Aitkenhead H, Costa N, Trivelli A, Litwin M, Picca S, et al. Normal 25-hydroxyvitamin D levels are associated with less proteinuria and attenuate renal failure progression in children with CKD. J Am Soc Nephrol. 2016;27(1):314–22. https://doi.org/10.1681/ASN.2014090947.

    Article  CAS  PubMed  Google Scholar 

  54. Portale AA, Wolf MS, Messinger S, Perwad F, Juppner H, Warady BA, et al. Fibroblast growth factor 23 and risk of CKD progression in children. Clin J Am Soc Nephrol. 2016;11(11):1989–98. https://doi.org/10.2215/CJN.02110216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Greenberg JH, Kakajiwala A, Parikh CR, Furth S. Emerging biomarkers of chronic kidney disease in children. Pediatr Nephrol. 2018;33(6):925–33. https://doi.org/10.1007/s00467-017-3701-9.

    Article  PubMed  Google Scholar 

  56. Backes Y, van der Sluijs KF, Mackie DP, Tacke F, Koch A, Tenhunen JJ, et al. Usefulness of suPAR as a biological marker in patients with systemic inflammation or infection: a systematic review. Intensive Care Med. 2012;38(9):1418–28. https://doi.org/10.1007/s00134-012-2613-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schaefer F, Trachtman H, Wuhl E, Kirchner M, Hayek SS, Anarat A, et al. Association of serum soluble urokinase receptor levels with progression of kidney disease in children. JAMA Pediatr. 2017;171(11):e172914. https://doi.org/10.1001/jamapediatrics.2017.2914.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Parsa A, Kao WH, Xie D, Astor BC, Li M, Hsu CY, et al. APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med. 2013;369(23):2183–96. https://doi.org/10.1056/NEJMoa1310345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 2010;329(5993):841–5. https://doi.org/10.1126/science.1193032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Reidy KJ, Hjorten R, Parekh RS. Genetic risk of APOL1 and kidney disease in children and young adults of African ancestry. Curr Opin Pediatr. 2018;30(2):252–9. https://doi.org/10.1097/MOP.0000000000000603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ng DK, Robertson CC, Woroniecki RP, Limou S, Gillies CE, Reidy KJ, et al. APOL1-associated glomerular disease among African-American children: a collaboration of the chronic kidney disease in children (CKiD) and nephrotic syndrome study network (NEPTUNE) cohorts. Nephrol Dial Transplant. 2017;32(6):983–90. https://doi.org/10.1093/ndt/gfw061.

    Article  PubMed  Google Scholar 

  62. Verbitsky M, Westland R, Perez A, Kiryluk K, Liu Q, Krithivasan P, et al. The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat Genet. 2019;51(1):117–27. https://doi.org/10.1038/s41588-018-0281-y.

    Article  CAS  PubMed  Google Scholar 

  63. Wuttke M, Wong CS, Wuhl E, Epting D, Luo L, Hoppmann A, et al. Genetic loci associated with renal function measures and chronic kidney disease in children: the pediatric investigation for genetic factors linked with renal progression consortium. Nephrol Dial Transplant. 2016;31(2):262–9. https://doi.org/10.1093/ndt/gfv342.

    Article  CAS  PubMed  Google Scholar 

  64. Tangri N, Stevens LA, Griffith J, Tighiouart H, Djurdjev O, Naimark D, et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA. 2011;305(15):1553–9. https://doi.org/10.1001/jama.2011.451.

    Article  CAS  PubMed  Google Scholar 

  65. Tangri N, Grams ME, Levey AS, Coresh J, Appel LJ, Astor BC, et al. Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis. JAMA. 2016;315(2):164–74. https://doi.org/10.1001/jama.2015.18202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. • Winnicki E, McCulloch CE, Mitsnefes MM, Furth SL, Warady BA, Ku E. Use of the kidney failure risk equation to determine the risk of progression to end-stage renal disease in children with chronic kidney disease. JAMA Pediatr. 2018;172(2):174–80. https://doi.org/10.1001/jamapediatrics.2017.4083 This paper applies the kidney failure risk equation (KFRE) to participants in the CKiD study and proved adequate ability to discriminate the risk for ESRD; authors suggest the KFRE could be incorporated into routine clinical care of children with CKD.

    Article  PubMed  Google Scholar 

  67. Wong H, Mylrea K, Feber J, Drukker A, Filler G. Prevalence of complications in children with chronic kidney disease according to KDOQI. Kidney Int. 2006;70(3):585–90. https://doi.org/10.1038/sj.ki.5001608.

    Article  CAS  PubMed  Google Scholar 

  68. Mitsnefes M, Flynn J, Cohn S, Samuels J, Blydt-Hansen T, Saland J, et al. Masked hypertension associates with left ventricular hypertrophy in children with CKD. J Am Soc Nephrol. 2010;21(1):137–44. https://doi.org/10.1681/ASN.2009060609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Khandelwal P, Murugan V, Hari S, Lakshmy R, Sinha A, Hari P, et al. Dyslipidemia, carotid intima-media thickness and endothelial dysfunction in children with chronic kidney disease. Pediatr Nephrol. 2016;31(8):1313–20. https://doi.org/10.1007/s00467-016-3350-4.

    Article  PubMed  Google Scholar 

  70. Khurana M, Silverstein DM. Etiology and management of dyslipidemia in children with chronic kidney disease and end-stage renal disease. Pediatr Nephrol. 2015;30(12):2073–84. https://doi.org/10.1007/s00467-015-3075-9.

    Article  PubMed  Google Scholar 

  71. Wesseling-Perry K, Salusky IB. Chronic kidney disease: mineral and bone disorder in children. Semin Nephrol. 2013;33(2):169–79. https://doi.org/10.1016/j.semnephrol.2012.12.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen K, Didsbury M, van Zwieten A, Howell M, Kim S, Tong A, et al. Neurocognitive and educational outcomes in children and adolescents with CKD: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2018;13(3):387–97. https://doi.org/10.2215/CJN.09650917.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Roberts MA. Commentary on the KDIGO clinical practice guideline for the management of blood pressure in chronic kidney disease. Nephrology (Carlton). 2014;19(1):53–5. https://doi.org/10.1111/nep.12168.

    Article  Google Scholar 

  74. •• Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140(3). doi:https://doi.org/10.1542/peds.2017-1904. Updated national guidelines from the American Academy of Pediatrics regarding diagnosis and treatment of hypertension in children, with several guidelines specific to children with CKD which includes an expanded role for ambulatory blood pressure monitoring to screen for masked hypertension; also suggests more aggressive blood pressure targets for children with CKD than previously recommended, and provides a revised definition of left ventricular hypertrophy.

  75. Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A, et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34(10):1887–920. https://doi.org/10.1097/HJH.0000000000001039.

    Article  CAS  PubMed  Google Scholar 

  76. Dionne JM, Harris KC, Benoit G, Feber J, Poirier L, Cloutier L, et al. Hypertension Canada’s 2017 guidelines for the diagnosis, assessment, prevention, and treatment of pediatric hypertension. Can J Cardiol. 2017;33(5):577–85. https://doi.org/10.1016/j.cjca.2017.03.007.

    Article  PubMed  Google Scholar 

  77. Webb NJ, Shahinfar S, Wells TG, Massaad R, Gleim GW, Santoro EP, et al. Losartan and enalapril are comparable in reducing proteinuria in children. Kidney Int. 2012;82(7):819–26. https://doi.org/10.1038/ki.2012.210.

    Article  CAS  PubMed  Google Scholar 

  78. • Fathallah-Shaykh SA. Proteinuria and progression of pediatric chronic kidney disease: lessons from recent clinical studies. Pediatr Nephrol. 2017;32(5):743–51. https://doi.org/10.1007/s00467-016-3448-8 Comprehensive review of the importance of proteinuria as a comorbidity, risk factor, and biomarker for progression in pediatric CKD.

    Article  PubMed  Google Scholar 

  79. van den Belt SM, Heerspink HJL, Gracchi V, de Zeeuw D, Wuhl E, Schaefer F, et al. Early proteinuria lowering by angiotensin-converting enzyme inhibition predicts renal survival in children with CKD. J Am Soc Nephrol. 2018;29(8):2225–33. https://doi.org/10.1681/ASN.2018010036.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nadeem S, Batisky DL. Aliskiren, the first direct renin inhibitor: assessing a role in pediatric hypertension and kidney diseases. Pediatr Nephrol. 2014;29(11):2105–11. https://doi.org/10.1007/s00467-013-2716-0.

    Article  PubMed  Google Scholar 

  81. Kelland EE, McAuley LM, Filler G. Are we ready to use aliskiren in children? Pediatr Nephrol. 2011;26(3):473–7. https://doi.org/10.1007/s00467-010-1702-z.

    Article  PubMed  Google Scholar 

  82. Wingen AM, Fabian-Bach C, Schaefer F, Mehls O. Randomised multicentre study of a low-protein diet on the progression of chronic renal failure in children. European study Group of Nutritional Treatment of chronic renal failure in childhood. Lancet. 1997;349(9059):1117–23.

    Article  CAS  PubMed  Google Scholar 

  83. Ajarmeh S, Er L, Brin G, Djurdjev O, Dionne JM. The effect of a multidisciplinary care clinic on the outcomes in pediatric chronic kidney disease. Pediatr Nephrol. 2012;27(10):1921–7. https://doi.org/10.1007/s00467-012-2209-6.

    Article  PubMed  Google Scholar 

  84. Filler G, Lipshultz SE. Why multidisciplinary clinics should be the standard for treating chronic kidney disease. Pediatr Nephrol. 2012;27(10):1831–4. https://doi.org/10.1007/s00467-012-2236-3.

    Article  PubMed  Google Scholar 

  85. American Academy of Pediatrics Section on Nephrology and American Society of Pediatric Nephrology. Choosing Wisely: Five Things Physicians and Patients Should Know. 2018. http://www.choosingwisely.org/societies/american-academy-of-pediatrics-section-on-nephrology-and-the-american-society-of-pediatric-nephrology/. Accessed 7/16/2018.

  86. Schinstock CA, Albright RC, Williams AW, Dillon JJ, Bergstralh EJ, Jenson BM, et al. Outcomes of arteriovenous fistula creation after the fistula first initiative. Clin J Am Soc Nephrol. 2011;6(8):1996–2002. https://doi.org/10.2215/CJN.11251210.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wartman SM, Rosen D, Woo K, Gradman WS, Weaver FA, Rowe V. Outcomes with arteriovenous fistulas in a pediatric population. J Vasc Surg. 2014;60(1):170–4. https://doi.org/10.1016/j.jvs.2014.01.050.

    Article  PubMed  Google Scholar 

  88. Kaur A, Davenport A. Hemodialysis for infants, children, and adolescents. Hemodial Int. 2014;18(3):573–82. https://doi.org/10.1111/hdi.12163.

    Article  PubMed  Google Scholar 

  89. Fischbach M, Edefonti A, Schroder C, Watson A. European pediatric Dialysis working G. Hemodialysis in children: general practical guidelines. Pediatr Nephrol. 2005;20(8):1054–66. https://doi.org/10.1007/s00467-005-1876-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chand DH, Valentini RP. International pediatric fistula first initiative: a call to action. Am J Kidney Dis. 2008;51(6):1016–24. https://doi.org/10.1053/j.ajkd.2008.02.309.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darcy K. Weidemann MD, MHS.

Ethics declarations

Conflict of Interest

Darcy K. Weidemann and Bradley A. Warady declare no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Nephrology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weidemann, D.K., Warady, B.A. Chronic Kidney Disease in Children: Risk-Based Stratification and Treatment. Curr Treat Options Peds 5, 45–60 (2019). https://doi.org/10.1007/s40746-019-00150-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-019-00150-x

Keywords

Navigation