Skip to main content
Log in

Relationships Between Essential Manganese Biology and Manganese Toxicity in Neurological Disease

  • Mechanisms of Toxicity (JR Richardson, Section Editor)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Manganese (Mn) is critical for neurodevelopment but also has been implicated in the pathophysiology of several neurological diseases. We discuss how Mn requirements intersect with Mn biology and toxicity, and how these requirements may be altered in neurological disease. Furthermore, we discuss the emerging evidence that the level of Mn associated with optimal overall efficiency for Mn biology does not necessarily coincide with optimal cognitive outcomes.

Recent Findings

Studies have linked Mn exposures with urea cycle metabolism and autophagy, with evidence that exposures typically neurotoxic may be able to correct deficiencies in these processes at least short term. The line between Mn-dependent biology and toxicity is thus blurred. Further, new work suggests that Mn exposures correlating to optimal cognitive scores in children are associated with cognitive decline in adults.

Summary

This review explores relationships between Mn-dependent neurobiology and Mn-dependent neurotoxicity. We propose the hypothesis that Mn levels/exposures that are toxic to some biological processes are beneficial for other biological processes and influenced by developmental stage and disease state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of Importance

  1. Michalke B, Fernsebner K. New insights into manganese toxicity and speciation. J Trace Elem Med Biol. 2014;28(2):106–16.

    Article  CAS  PubMed  Google Scholar 

  2. Buettner GR, Ng CF, Wang M, Rodgers VGJ, Schafer FQ. A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radic Biol Med. 2006;41(8):1338–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17015180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gunter TE, Gerstner B, Lester T, Wojtovich AP, Malecki J, Swarts SG, et al. An analysis of the effects of Mn2+ on oxidative phosphorylation in liver, brain, and heart mitochondria using state 3 oxidation rate assays. Toxicol Appl Pharmacol. 2010;249(1):65–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20800605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wedler FC, Denman RB. Glutamine synthetase: the major Mn(II) enzyme in mammalian brain. Curr Top Cell Regul. 1984;24:153–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6149889

    Article  CAS  PubMed  Google Scholar 

  5. • Patassini S, Begley P, Reid SJ, Xu J, Church SJ, Curtis M, et al. Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington’s disease. Biochem Biophys Res Commun. 2015;468(1–2):161–6. This study is the first to demonstrate an alteration in urea cycle metabolism in the brain of HD patients

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Z, Miah M, Culbreth M, Aschner M. Autophagy in neurodegenerative diseases and metal neurotoxicity. Neurochem Res. 2016;41(1–2):409–22. Available from: http://link.springer.com/10.1007/s11064-016-1844-x

    Article  CAS  PubMed  Google Scholar 

  7. Horning KJ, Caito SW, Tipps KG, Bowman AB, Aschner M. Manganese is essential for neuronal health. Annu Rev Nutr. 2015;35:71–108. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25974698

    Article  CAS  PubMed  Google Scholar 

  8. Vollet K, Haynes EN, Dietrich KN. Manganese exposure and cognition across the lifespan: contemporary review and argument for biphasic dose-response health effects. Curr Environ Heal Reports. 2016;8:1–13. Available from: http://link.springer.com/10.1007/s40572-016-0108-x

    Article  Google Scholar 

  9. • Haynes EN, Sucharew H, Kuhnell P, Alden J, Barnas M, Wright RO, et al. Manganese exposure and neurocognitive outcomes in rural school-age children: the communities actively researching exposure study (Ohio, USA). Environ Health Perspect. 2015;123(10):1066–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25902278. This study demonstrates the bi-phasic relationship between select Mn exposure biomarkers and child IQ

    Article  PubMed  PubMed Central  Google Scholar 

  10. Torres-Agustín R, Rodríguez-Agudelo Y, Schilmann A, Solís-Vivanco R, Montes S, Riojas-Rodríguez H, et al. Effect of environmental manganese exposure on verbal learning and memory in Mexican children. Environ Res. 2013;121:39–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23141434

    Article  PubMed  Google Scholar 

  11. Chiang MC, Chen HM, Lee YH, Chang HH, Wu Y-C, Soong B-W, et al. Dysregulation of C/EBPalpha by mutant Huntingtin causes the urea cycle deficiency in Huntington’s disease. Hum Mol Genet. 2007;16(5):483–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17213233

    Article  CAS  PubMed  Google Scholar 

  12. Chiang M-C, Chen H-M, Lai H-L, Chen H-W, Chou S-Y, Chen C-M, et al. The A2A adenosine receptor rescues the urea cycle deficiency of Huntington’s disease by enhancing the activity of the ubiquitin-proteasome system. Hum Mol Genet. 2009;18(16):2929–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19443488

    Article  CAS  PubMed  Google Scholar 

  13. Morello M, Zatta P, Zambenedetti P, Martorana A, D’Angelo V, Melchiorri G, et al. Manganese intoxication decreases the expression of manganoproteins in the rat basal ganglia: an immunohistochemical study. Brain Res Bull. 2007;74(6):406–415. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17920449

  14. Gruber B, Kłaczkow G, Jaworska M, Krzysztoń-Russjan J, Anuszewska EL, Zielonka D, et al. Huntington’ disease—imbalance of amino acid levels in plasma of patients and mutation carriers. Ann Agric Environ Med. 2013;20(4):779–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24364452

    CAS  PubMed  Google Scholar 

  15. Deckel AW, Tang V, Nuttal D, Gary K, Elder R. Altered neuronal nitric oxide synthase expression contributes to disease progression in Huntington’s disease transgenic mice. Brain Res. 2002;939(1):76–86.

    Article  CAS  PubMed  Google Scholar 

  16. Wong A, Dukic-Stefanovic S, Gasic-Milenkovic J, Schinzel R, Wiesinger H, Riederer P, et al. Anti-inflammatory antioxidants attenuate the expression of inducible nitric oxide synthase mediated by advanced glycation endproducts in murine microglia. Eur J Neurosci. 2001;14(12):1961–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11860491

    Article  CAS  PubMed  Google Scholar 

  17. Liu P, Fleete MS, Jing Y, Collie ND, Curtis MA, Waldvogel HJ, et al. Altered arginine metabolism in Alzheimer’s disease brains. Neurobiol Aging. 2014;35(9):1992–2003.

    Article  CAS  PubMed  Google Scholar 

  18. Deckel AW, Volmer P, Weiner R, Gary KA, Covault J, Sasso D, et al. Dietary arginine alters time of symptom onset in Huntington’s disease transgenic mice. Brain Res. 2000;875(1–2):187–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10967315

    Article  CAS  PubMed  Google Scholar 

  19. Ash DE. Structure and function of arginases. J Nutr. 2004;134(10 Suppl):2760S–4S. discussion 2765S–2767S. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15465781

    CAS  PubMed  Google Scholar 

  20. Brock AA, Chapman SA, Ulman EA, Wu G. Dietary manganese deficiency decreases rat hepatic arginase activity. J Nutr. 1994;124(3):340–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8120652

    CAS  PubMed  Google Scholar 

  21. Bichell TJ V, Wegrzynowicz M, Grace Tipps K, Bradley EM, Uhouse MA, Bryan M, et al. Reduced bioavailable manganese causes striatal urea cycle pathology in Huntington’s disease mouse model. Biochim Biophys Acta. 2017 14 [cited 2017 Feb 20]; Available from: http://linkinghub.elsevier.com/retrieve/pii/S0925443917300546

  22. Martinez-Vicente M. Autophagy in neurodegenerative diseases: from pathogenic dysfunction to therapeutic modulation. Semin Cell Dev Biol. 2015;40:115–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25843774

    Article  CAS  PubMed  Google Scholar 

  23. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci. 2008;28(27):6926–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci. 2010;13(5):567–76. Available from: http://www.nature.com/doifinder/10.1038/nn.2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 2014;24(1):92–104. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24281265

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Cao R, Cai T, Aschner M, Zhao F, Yao T, et al. The role of autophagy dysregulation in manganese-induced dopaminergic neurodegeneration. Neurotox Res. 2013;24(4):478–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23604964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gorojod RM, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler ML. The autophagic-lysosomal pathway determines the fate of glial cells under manganese-induced oxidative stress conditions. Free Radic Biol Med. 2015;87:237–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26163003

    Article  CAS  PubMed  Google Scholar 

  28. Afeseh Ngwa H, Kanthasamy A, Gu Y, Fang N, Anantharam V, Kanthasamy AG. Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells. Toxicol Appl Pharmacol. 2011;256(3):227–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21856324

    Article  CAS  PubMed  Google Scholar 

  29. Hozumi I, Hasegawa T, Honda A, Ozawa K, Hayashi Y, Hashimoto K, et al. Patterns of levels of biological metals in CSF differ among neurodegenerative diseases. J Neurol Sci. 2011;303(1–2):95–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21292280

    Article  CAS  PubMed  Google Scholar 

  30. Guilarte TR. APLP1, Alzheimer’s-like pathology and neurodegeneration in the frontal cortex of manganese-exposed non-human primates. Neurotoxicology. 2010;31(5):572–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20188756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guilarte TR, Burton NC, Verina T, Prabhu VV, Becker KG, Syversen T, et al. Increased APLP1 expression and neurodegeneration in the frontal cortex of manganese-exposed non-human primates. J Neurochem. 2008;105(5):1948–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18284614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. • Ghneim HK. The kinetics of the effect of manganese supplementation on SOD2 activity in senescent human fibroblasts. Eur Rev Med Pharmacol Sci. 2016;20(9):1866–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27212182. This study demonstrates that human fibroblasts increase Mn requirements with age

    CAS  PubMed  Google Scholar 

  33. Parmalee NL, Aschner M. Manganese and aging. Neurotoxicology. 2016;56:262–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27293182

    Article  CAS  PubMed  Google Scholar 

  34. Fernsebner K, Zorn J, Kanawati B, Walker A, Michalke B. Manganese leads to an increase in markers of oxidative stress as well as to a shift in the ratio of Fe(II)/(III) in rat brain tissue. Metallomics. 2014;6(4):921–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24599255

    Article  CAS  PubMed  Google Scholar 

  35. Wahlberg K, Kippler M, Alhamdow A, Rahman SM, Smith DR, Vahter M, et al. Common polymorphisms in the solute carrier SLC30A10 are associated with blood manganese and neurological function. Toxicol Sci. 2016;149(2):473–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26628504

    Article  CAS  PubMed  Google Scholar 

  36. Rentschler G, Covolo L, Ahmadi Haddad A, Lucchini RG, Zoni S, Broberg K. ATP13A2 (PARK9) polymorphisms influence the neurotoxic effects of manganese. Neurotoxicology. 2012;33(4):697–702. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22285144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krajewski WW, Collins R, Holmberg-Schiavone L, Jones TA, Karlberg T, Mowbray SL. Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design. J Mol Biol. 2008;375(1):217–28. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022283607013678

    Article  CAS  PubMed  Google Scholar 

  38. Cama E, Colleluori DM, Emig FA, Shin H, Kim SW, Kim NN, et al. Human arginase II: crystal structure and physiological role in male and female sexual arousal † , ‡. Biochemistry. 2003;42(28):8445–51. Available from: http://pubs.acs.org/doi/abs/10.1021/bi034340j

    Article  CAS  PubMed  Google Scholar 

  39. Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med. 2002;33(3):337–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12126755

    Article  CAS  PubMed  Google Scholar 

  40. Trumbo P, Yates AA, Schlicker S, Poos M. Dietary reference intakes: vitamin a, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc. 2001;101(3):294–301. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25057538%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/11269606

    Article  CAS  PubMed  Google Scholar 

  41. Bowler RM, Roels HA, Nakagawa S, Drezgic M, Diamond E, Park R, et al. Dose-effect relationships between manganese exposure and neurological, neuropsychological and pulmonary function in confined space bridge welders. Occup Environ Med. 2007;64(3):167–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17018581

    Article  CAS  PubMed  Google Scholar 

  42. Cordova FM, Aguiar AS, Peres TV, Lopes MW, Gonçalves FM, Pedro DZ, et al. Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox. Arch Toxicol. 2013;87(7):1231–44. Available from: http://link.springer.com/10.1007/s00204-013-1017-5

    Article  CAS  PubMed  Google Scholar 

  43. Fu H, Chen W, Yu H, Wei Z, Yu X. The effects of preweaning manganese exposure on spatial learning ability and p-CaMKIIα level in the hippocampus. Neurotoxicology. 2016;52:98–103.

    Article  CAS  PubMed  Google Scholar 

  44. Su C, Chen K, Zou Y, Shen Y, Xia B, Liang G, et al. Chronic exposure to manganese sulfate leads to adverse dose-dependent effects on the neurobehavioral ability of rats. Environ Toxicol. 2016;31(11):1571–1579. Available from:doi: 10.1002/tox.22161

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron B. Bowman.

Ethics declarations

Conflict of Interest

Anna C. Pfalzer and Aaron B. Bowman declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

This article is part of the Topical Collection on Mechanisms of Toxicity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfalzer, A.C., Bowman, A.B. Relationships Between Essential Manganese Biology and Manganese Toxicity in Neurological Disease. Curr Envir Health Rpt 4, 223–228 (2017). https://doi.org/10.1007/s40572-017-0136-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-017-0136-1

Keywords

Navigation