Skip to main content

Advertisement

Log in

Catch the ruler: concurrent validity and test–retest reliability of the ReacStick measures of reaction time and inhibitory executive function in older people

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Reduced cognitive function, particularly executive function (EF), is associated with an increased risk of falling in older people. We evaluated the utility of the ReacStick test, a clinical test of reaction time, and inhibitory EF developed, for young athletes, for fall-risk assessment in older people.

Aims

To evaluate the psychometric properties of ReacStick measures of reaction time and executive functioning in healthy community-dwelling older people.

Methods

140 participants (aged 77 ± 5 years) underwent testing. Two test conditions—simple and inhibitory go/no-go—provided measures of reaction time, recognition load (difference in reaction time between conditions), and go/no-go accuracy. Concurrent validity was evaluated against the conventional tests of reaction time and EF (simple hand reaction time, trail-making test, and Stroop colour test). Discriminant ability was determined for fall-risk factors (age, gender, physiological profile assessment, and fall history). Test–retest reliability after 1 week was evaluated in 30 participants.

Results

ReacStick reaction time correlated with tests of reaction time and EF, recognition load correlated with inhibitory EF, and go accuracy correlated with reaction time and inhibitory EF. No-go accuracy was not significantly correlated with any of the reaction time and EF tests. Test–retest reliability was good-to-excellent (ICC > 0.6) for all the outcomes. ReacStick reaction time discriminated between groups based on age, recognition load between genders, and no-go accuracy between retrospective fallers and non-fallers.

Discussion

An unavoidable time pressure may result in complementary information to the traditional measures.

Conclusions

The ReacStick is a reliable test of reaction time and inhibitory EF in older people and could have value for fall-risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Springer S, Giladi N, Peretz C et al (2006) Dual-tasking effects on gait variability: the role of aging, falls, and executive function. Mov Disord 21:950–957. https://doi.org/10.1002/mds.20848

    Article  PubMed  Google Scholar 

  2. Yogev-Seligmann G, Hausdorff JM, Giladi N (2008) The role of executive function and attention in gait. Mov Disord 23:329–342. https://doi.org/10.1002/mds.21720

    Article  PubMed  Google Scholar 

  3. Lord S, Galna B, Verghese J et al (2013) Independent domains of gait in older adults and associated motor and nonmotor attributes: validation of a factor analysis approach. J Gerontol Ser A Biol Sci Med Sci 68:820–827. https://doi.org/10.1093/gerona/gls255

    Article  Google Scholar 

  4. Herman T, Mirelman A, Giladi N et al (2010) Executive control deficits as a prodrome to falls in healthy older adults: a prospective study linking thinking, walking, and falling. J Gerontol Ser A Biol Sci Med Sci 65:1086–1092. https://doi.org/10.1093/gerona/glq077

    Article  Google Scholar 

  5. Mirelman A, Herman T, Brozgol M et al (2012) Executive function and falls in older adults: new findings from a five-year prospective study link fall risk to cognition. PLoS One 7:e40297. https://doi.org/10.1371/journal.pone.0040297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Delbaere K, Kochan NA, Close JC et al (2012) Mild cognitive impairment as a predictor of falls in community-dwelling older people. Am J Geriatr Psychiatry 20:845–853. https://doi.org/10.1097/JGP.0b013e31824afbc4

    Article  PubMed  Google Scholar 

  7. Hsu CL, Nagamatsu LS, Davis JC et al (2012) Examining the relationship between specific cognitive processes and falls risk in older adults: a systematic review. Osteoporos Int 23:2409–2424. https://doi.org/10.1007/s00198-012-1992-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Montero-Odasso M, Verghese J, Beauchet O et al (2012) Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J Am Geriatr Soc 60:2127–2136. https://doi.org/10.1111/j.1532-5415.2012.04209.x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Verbruggen F, Logan GD (2009) Models of response inhibition in the stop-signal and stop-change paradigms. Neurosci Biobehav Rev 33:647–661. https://doi.org/10.1016/j.neubiorev.2008.08.014

    Article  PubMed  Google Scholar 

  10. Wecker NS, Kramer JH, Wisniewski A et al (2000) Age effects on executive ability. Neuropsychology 14:409–414

    Article  CAS  PubMed  Google Scholar 

  11. Diamond A (2013) Executive functions. Annu rev Psychol 64:135–168

    Article  PubMed  Google Scholar 

  12. Miyake A, Friedman NP, Emerson MJ et al (2000) The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cogn Psychol 41:49–100. https://doi.org/10.1006/cogp.1999.0734

    Article  CAS  PubMed  Google Scholar 

  13. Collins A, Koechlin E (2012) Reasoning, learning, and creativity: frontal lobe function and human decision-making. PLoS Biol 10:e1001293. https://doi.org/10.1371/journal.pbio.1001293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lunt L, Bramham J, Morris RG et al (2012) Prefrontal cortex dysfunction and ‘Jumping to Conclusions’: bias or deficit? J Neuropsychol 6:65–78. https://doi.org/10.1111/j.1748-6653.2011.02005.x

    Article  PubMed  Google Scholar 

  15. Whiteside DM, Kealey T, Semla M et al (2016) Verbal fluency: language or executive function measure? Appl Neuropsychol Adult 23:29–34. https://doi.org/10.1080/23279095.2015.1004574

    Article  PubMed  Google Scholar 

  16. Anstey KJ, Wood J, Kerr G et al (2009) Different cognitive profiles for single compared with recurrent fallers without dementia. Neuropsychology 23:500

    Article  PubMed  Google Scholar 

  17. Schoene D, Delbaere K, Lord SR (2017) Impaired response selection during stepping predicts falls in older people—a cohort study. J Am Med Dir Assoc 18:719–725

    Article  PubMed  Google Scholar 

  18. Eckner JT, Richardson JK, Kim H et al (2012) A novel clinical test of recognition reaction time in healthy adults. Psychol Assess 24:249–254. https://doi.org/10.1037/a0025042

    Article  PubMed  Google Scholar 

  19. Eckner JT, Chandran S, Richardson JK (2011) Investigating the role of feedback and motivation in clinical reaction time assessment. PM R J Injury Funct Rehabil 3:1092–1097. https://doi.org/10.1016/j.pmrj.2011.04.022

    Article  Google Scholar 

  20. Eckner JT, Kutcher JS, Broglio SP et al (2014) Effect of sport-related concussion on clinically measured simple reaction time. Br J Sports Med 48:112–118. https://doi.org/10.1136/bjsports-2012-091579

    Article  PubMed  Google Scholar 

  21. Eckner JT, Lipps DB, Kim H et al (2011) Can a clinical test of reaction time predict a functional head-protective response? Med Sci Sports Exerc 43:382–387. https://doi.org/10.1249/MSS.0b013e3181f1cc51

    Article  PubMed  PubMed Central  Google Scholar 

  22. Delbaere K, Valenzuela T, Woodbury A et al (2015) Evaluating the effectiveness of a home-based exercise programme delivered through a tablet computer for preventing falls in older community-dwelling people over 2 years: study protocol for the Standing Tall randomised controlled trial. BMJ Open 5:e009173. https://doi.org/10.1136/bmjopen-2015-009173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lord SR, Menz HB, Tiedemann A (2003) A physiological profile approach to falls risk assessment and prevention. Phys Ther 83:237–252

    PubMed  Google Scholar 

  24. Lezak MD, Howieson DB, Loring DW et al (2004) Neuropsychological assessment. Oxford University Press, USA

    Google Scholar 

  25. Sanchez-Cubillo I, Perianez JA, Adrover-Roig D et al (2009) Construct validity of the Trail Making Test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J Int Neuropsychol Soc 15:438–450. https://doi.org/10.1017/S1355617709090626

    Article  CAS  PubMed  Google Scholar 

  26. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd. Erlbaum, Hillsdale

    Google Scholar 

  27. Cicchetti D (1994) Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instrument in psychology. Psychol Assess 6:284–290

    Article  Google Scholar 

  28. Eckner JT, Whitacre RD, Kirsch NL et al (2009) Evaluating a clinical measure of reaction time: an observational study. Percept Motor Skills 108:717–720

    Article  PubMed  Google Scholar 

  29. Montare A (2010) The simplest chronoscope II: reaction time measured by meterstick versus machine. Percept Mot Skills 111:819–828

    Article  PubMed  Google Scholar 

  30. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  CAS  PubMed  Google Scholar 

  31. Bari A, Robbins TW (2013) Inhibition and impulsivity: behavioral and neural basis of response control. Progress Neurobiol 108:44–79

    Article  Google Scholar 

  32. Salthouse TA (1996) The processing-speed theory of adult age differences in cognition. Psychol Rev 103:403

    Article  CAS  PubMed  Google Scholar 

  33. Der G, Deary IJ (2006) Age and sex differences in reaction time in adulthood: results from the United Kingdom Health and Lifestyle Survey. Psychol Aging 21:62

    Article  PubMed  Google Scholar 

  34. Richardson JK, Eckner JT, Allet L et al (2017) Complex and simple clinical reaction times are associated with gait, balance, and major fall injury in older subjects with diabetic peripheral neuropathy. Am J Phys Med Rehabil 96:8

    Article  PubMed  PubMed Central  Google Scholar 

  35. Verghese J, Wang C, Ayers E et al (2017) Brain activation in high-functioning older adults and falls: Prospective cohort study. Neurology 88:191–197. https://doi.org/10.1212/WNL.0000000000003421

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We like to thank our participants for participating, and research assistants Jessica Chow, Garth McInerney, Ashton May, Lillian Miles, Linda Pickett, Daniel Steffens, and Ashley Woodbury for their help with participant recruitment and assessments.

Funding

This work was supported by the Human Frontier Science Program (HFSP long-term fellowship number LT001080/2017); the Dutch Organisation for Scientific Research (NWO VIDI Grant number 91714344); the Newman Family Foundation; the Australian National Health and Medical Research Council (NHMRC project Grant number 1084739).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Delbaere.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Statement of human and animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Schooten, K.S., Duran, L., Visschedijk, M. et al. Catch the ruler: concurrent validity and test–retest reliability of the ReacStick measures of reaction time and inhibitory executive function in older people. Aging Clin Exp Res 31, 1147–1154 (2019). https://doi.org/10.1007/s40520-018-1050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-018-1050-6

Keywords

Navigation