Skip to main content
Log in

A non-ideally excited pendulum controlled by SDRE technique

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this work, the perturbation theory is applied to the analysis of an electromechanical pendulum system. The frequency response behavior of the system is studied, and the existence of unstable poles is detected using the Routh–Hurwitz criterion. Numerical simulations show the existence of nonlinear behaviors such as hysteresis and the Sommerfeld effect in the resonance region. To damp the electromechanical system oscillations due to the nonlinear characteristics of the system the State Dependent Riccati Equation (SDRE) technique is used. The SDRE control strategy is applied considering two control signals, a feedback control that force the state trajectory of the system to a previously defined periodic orbit, and a nonlinear feedforward control that keeps the system motion synchronized to the periodic orbit. Additionally, the robustness of the control technique is tested for parametric uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Input signals, forces, or any forcing terms in a differential equation.

References

  1. Kononenko VO (1969) Vibrating systems with a limited power supply. Iliffe Books Ltd, London

    Google Scholar 

  2. Nayfeh AH (1981) Introduction to Perturbation Techniques. John Wiley & Sons Inc, New York

    MATH  Google Scholar 

  3. Danuta S, Kot M (2007) Chaotic vibration of an autoparametrical system with a non-ideal source of power. J Theor Appl Mech 45(1):119–131

    Google Scholar 

  4. Balthazar JM, Mook DT, Weber HI, Brasil RMLRF, Fenili A, Belato D, Felix JLP (2001) Recent results on vibrating problems with limited power supply. In: Sixth Conference on dynamical Systems Theory and Applications, Lodz, Poland, December, 10–12, 27–50

  5. Gonçalves PJP, Silveira M, Pontes Junior BR, Balthazar JM (2014) The dynamic behavior of a cantilever beam coupled to a non-ideal unbalanced motor through numerical and experimental analysis. J Sound Vib 333:5115–5129

    Article  Google Scholar 

  6. Cveticanin L, Zukovic M (2015) Motion of a motor-structure non-ideal system. Eur J Mech A Solids 53:229–240

    Article  MathSciNet  Google Scholar 

  7. Fossi DOT, Woafo P (2013) Generation of complex phenomena in a simple electromechanical system using the feedback control. Commun Nonlinear Sci Numer Simulat 18:209–218

    Article  MathSciNet  Google Scholar 

  8. Palacios JL, Balthazar JM, Brasil RMLRF (2002) On nonideal and nonlinear portal frame dynamics analysis using bogoliubov averaging method. J Braz Soc Mech Sci Eng 24(4):257–265

    Article  Google Scholar 

  9. Felix JLP, Balthazar JM, Brasil RMLRF (2005) On saturation control of a non-ideal vibrating portal frame foundation type shear-building. J Vib Control 11:121–136

    Article  MATH  Google Scholar 

  10. Arbex HC, Balthazar JM, Pontes BR Jr, Brasil RMLRF, Felix JLP, Tusset AM, Bueno AM (2015) On nonlinear dynamics behavior and control of a new model of a magnetically levitated vibrating system, excited by an unbalanced DC motor of limited power supply. J Braz Soc Mech Sci Eng 37(4):1139–1150

    Article  Google Scholar 

  11. Piccirillo V, Tusset AM, Balthazar JM (2014) Dynamical jump attenuation in a non-ideal system through magneto rheological damper. J Theor Appl Mech (Warsaw) 53:595–604

    Google Scholar 

  12. Djanan AAN, Nbendjo BRN, Woafo P (2013) Electromechanical control of vibration on a plate submitted to anon-ideal excitation. Mech Res Commun 54:72–82

    Article  Google Scholar 

  13. Tusset AM, Balthazar JM, Felix JLP (2013) On elimination of chaotic behavior in a non-ideal portal frame structural system, using both passive and active controls. J Vib Control 19(6):803–813

    Article  MathSciNet  MATH  Google Scholar 

  14. Pearson JD (1962) Approximation methods in optimal control. J Electron Control 13:453–469

    Article  Google Scholar 

  15. Wernli A, Cook G (1975) Suboptimal control for the nonlinear quadratic regulator problem. Automatica 11:75–84

    Article  MathSciNet  MATH  Google Scholar 

  16. Mracek CP, Cloutier JR (1998) Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method. Int J Robust Nonlinear Control 8:401–433

    Article  MathSciNet  MATH  Google Scholar 

  17. Friedland B (1996) Advanced control system design. Prentice-Hall, Englewood Cliff, pp 110–112

    MATH  Google Scholar 

  18. Balthazar JM, Bassinello DG, Tusset AM, Bueno AM, Pontes BR (2014) Nonlinear control in an electromechanical transducer with chaotic behavior. Meccanica 49(8):1859–1867

    MathSciNet  MATH  Google Scholar 

  19. Tusset AM, Balthazar JM (2013) On the chaotic suppression of both ideal and non-ideal duffing based vibrating systems, using a magnetorheological damper. Differ Equ Dyn Syst 21:105–121

    Article  MathSciNet  MATH  Google Scholar 

  20. Bueno AM, Tusset AM, Santos JPM, Ttsushida M, Balthazar JM (2013) SDRE control applied to an electromechanical pendulum excited by a non-ideal motor. In: Proceedings of the ASME 2013 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2013, August 4–7, Portland, Oregon, USA, 2013

  21. Tusset MA, Piccirillo V, Bueno AM, Balthazar MJ, Sado D, Felix JLP, Brasil RMLRDF (2015) Chaos control and sensitivity analysis of a double pendulum arm excited by an RLC circuit based nonlinear shaker. J Vib Control 1:1–17

    Google Scholar 

  22. Molter A, Silveira OAA, Fonseca JSO, Bottega V (2010) Simultaneous piezoelectric actuator and sensor placement optimization and control design of manipulators with flexible links using SDRE method. Math Problems Eng 2010:362437

    Article  MATH  Google Scholar 

  23. Fenili A, Balthazar JM (2011) The rigid-flexible nonlinear robotic manipulator: modeling and control. Commun Nonlinear Sci Numer Simul 16(5):2332–2341

    Article  Google Scholar 

  24. Lima JJ, Tusset AM, Janzen FC, Piccirillo V, Nascimento CB, Balthazar JM, Brasil MRLF (2014) Nonlinear state estimation and control applied to a manipulator robotic including drive motor. Math Eng Sci Aerosp Transdiscipl Int J 5:413–425

    MATH  Google Scholar 

  25. Tusset AM, Balthazar JM, Bassinello DG, Pontes BR, Felix JLP (2012) Statements on chaos control designs, including a fractional order dynamical system, applied to a MEMS comb-drive actuator. Nonlinear Dyn 69:1837–1857

    Article  MathSciNet  MATH  Google Scholar 

  26. Tusset AM, Bueno AM, Nascimento CB, Kaster MS, Balthazar JM (2013) Nonlinear state estimation and control for chaos suppression in MEMS resonator. Shock Vib 20:749–761

    Article  Google Scholar 

  27. Balthazar JM, Tusset AM, Souza SLTD, Bueno AM (2012) Microcantilever chaotic motion suppression in tapping mode atomic force microscope. Proc Inst Mech Eng Part C J Mech Eng Sci 227:1730–1741

    Article  Google Scholar 

  28. Nozaki R, Balthazar JM, Tusset AM, Pontes BR, Bueno AM (2013) Nonlinear control system applied to atomic force microscope including parametric errors. J Control Autom Electri Syst 24:223–231

    Article  Google Scholar 

  29. Rodrigues KS, Balthazar JM, Tusset AM, Pontes BR, Bueno AM (2014) Preventing chaotic motion in tapping-mode atomic force microscope. J Control Autom Electri Syst 25:732–740

    Article  Google Scholar 

  30. Balthazar JM, Tusset AM, Bueno AM (2014) Nonlinear TM-AFM control considering parametric errors in the control signal evaluation. J Theor Appl Mech (Warsaw) 52:93–106

    Google Scholar 

  31. Felix JLP, Balthazar JM, Brasil RMLRF (2009) Comments on nonlinear dynamics of a non-ideal Duffing–Rayleigh oscillator: numerical and analytical approachs. J Sound Vib 319:1136–1149

    Article  Google Scholar 

  32. El-Badawy AA (2007) Behavioral investigation of a nonlinear vibrating system. J Vib Control 13(2):203–217

    Article  MathSciNet  MATH  Google Scholar 

  33. Kuo BC (1995) Automatic control systems. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge São Paulo Research Foundation—FAPESP (Grant: 2013/04101-6), and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPQ (Grant: 447539/2014-0 and 303903/2014-7) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Átila Madureira Bueno.

Additional information

Technical Editor: Aline Souza de Paula.

Appendix

Appendix

$$\begin{aligned}J_{1} &= \frac{{a^{\prime}_{1} \omega_{1}}}{2\omega_{3}}\left\{\cos[ {(\varOmega - \omega_{3} )\tau + (\beta_{1} - \beta_{3} )}]\right. \\& \left. \quad -\, \cos[(\varOmega - \omega_{3})\tau+ (\beta_{1} + \beta_{3})] \right\}\end{aligned}$$
(35)
$$\begin{aligned} J_{2} &= \frac{{a_{1} \beta^{\prime}_{1} \omega_{1} }}{{2\omega_{3} }}\left\{ \sin [ (\varOmega + \omega_{3} )\tau + (\beta_{1} + \beta_{3} )] \right.\\ & \quad \left. - \sin [ (\varOmega - \omega_{3} )\tau + (\beta_{1} - \beta_{3} ) ] \right\} \end{aligned}$$
(36)
$$J_{3} = - \frac{{a_{3} \mu_{3} }}{2}\left[ {1 - \cos \left( {2\omega_{3} \tau + 2\beta_{3} } \right)} \right]$$
(37)
$$\begin{aligned} J_{4} &= - \varepsilon \frac{{\delta a_{1} \omega_{1} \mu_{3} }} {{2\omega_{3} }} \left \{ \cos [(\varOmega - \omega_{3} )\tau + (\beta_{1} - \beta_{3} )] \right. \\ & \left. \quad - \cos [(\varOmega + \omega_{3} )\tau + (\beta_{1} + \beta_{3} )] \right\}\end{aligned}$$
(38)
$$\begin{aligned} J_{5} &= - \frac{{\delta a^{\prime}_{1} \omega_{1} }}{2} \left\{ \cos [ (\varOmega - \omega_{3} )\tau + (\beta_{1} - \beta_{3} ) ] \right. \\ & \left. \quad - \cos [ (\varOmega + \omega_{3} )\tau + (\beta_{1} + \beta_{3} ) ] \right\} \end{aligned}$$
(39)
$$\begin{aligned} J_{6} &= - \frac{{\delta a_{1} \omega_{1} \beta^{\prime}_{1} }}{2} \left\{ \sin [ (\varOmega + \omega_{3} ) \tau + (\beta_{1} + \beta_{3})] \right. \\ & \left. \quad - \sin [ (\varOmega - \omega_{3} ) \tau + (\beta_{1} - \beta_{3}) ] \right\} \end{aligned}$$
(40)
$$\begin{aligned} J_{7} &= - \frac{{\delta a_{1} }}{2}\left( {\omega_{1} \varOmega - \varOmega_{3}^{2} } \right) \left\{ \sin [ (\varOmega + \omega_{3} )\tau + (\beta_{1} + \beta_{3} )] \right. \\ & \left. \quad - \sin [ (\varOmega - \omega_{3} )\tau + (\beta_{1} - \beta_{3} )] \right\} \end{aligned}$$
(41)
$$J^{\prime}_{1} = \frac{{a^{\prime}_{1} \omega_{1} }}{{2a_{3} \omega_{3} }}\left\{ {\sin \left[ {(\varOmega + \omega_{3} )\tau + (\beta_{1} + \beta_{3} )} \right] - \cos \left[ {(\omega_{3} - \varOmega )\tau + (\beta_{3} - \beta_{1} )} \right]} \right\}$$
(42)
$$J^{\prime}_{2} = \frac{{a_{1} \beta^{\prime}_{1} \omega_{1} }}{{2a_{3} \omega_{3} }}\left\{ {\cos \left[ {(\varOmega + \omega_{3} )\tau + (\beta_{1} + \beta_{3} )} \right] + \cos \left[ {(\varOmega - \omega_{3} )\tau + (\beta_{1} - \beta_{3} )} \right]} \right\}$$
(43)
$$J^{\prime}_{3} = \frac{{a_{1} \omega_{1} \varOmega }}{{2a_{3} \omega_{3} }}\left\{ {\cos \left[ {(\varOmega + \omega_{3} )\tau + (\beta_{1} + \beta_{3} )} \right] + \cos \left[ {(\varOmega - \omega_{3} )\tau + (\beta_{1} - \beta_{3} )} \right]} \right\}$$
(44)
$$J^{\prime}_{4} = - \varepsilon \frac{{\mu_{3} }}{2}\sin \left[ {2(\omega_{3} \tau + \beta_{3} )} \right]$$
(45)
$$J^{\prime}_{5} = - \varepsilon \frac{{\mu_{3} \delta a^{\prime}_{1} \omega_{1} }}{{2a_{3} \omega_{3} }}\left\{ {\sin \left[ {(\varOmega + \omega_{3} )\tau + (\beta_{1} + \beta_{3} )} \right] - \sin \left[ {(\omega_{3} - \varOmega )\tau + (\beta_{3} - \beta_{1} )} \right]} \right\}$$
(46)
$$J^{\prime}_{6} = - \frac{{\delta a^{\prime}_{1} \omega_{1} }}{{2a_{3} \omega_{3} }}\left\{ {\sin \left[ {(\varOmega + \omega_{3} )\tau + (\beta_{1} + \beta_{3} )} \right] - \sin \left[ {(\omega_{3} - \varOmega )\tau + (\beta_{1} - \beta_{3} )} \right]} \right\}$$
(47)
$$J^{\prime}_{7} = - \frac{{\delta a_{1} \omega_{1} \beta^{\prime}_{1} }}{{2a_{3} \omega_{3} }}\left\{ {\cos \left[ {(\varOmega + \omega_{3} )\tau + (\beta_{1} + \beta_{3} )} \right] + \sin \left[ {(\varOmega - \omega_{3} )\tau + (\beta_{1} - \beta_{3} )} \right]} \right\}$$
(48)
$$J^{\prime}_{8} = - \frac{{\delta a_{1} }}{{2a_{3} \omega_{3} }}\left( {\omega_{1} \varOmega - \omega_{3}^{2} } \right)\left\{ {\cos \left[ {(\varOmega + \omega_{3} )\tau + (\beta_{1} + \beta_{3} )} \right] + \cos \left[ {(\varOmega - \omega_{3} )\tau + (\beta_{1} - \beta_{3} )} \right]} \right\}$$
(49)
$$G_{1} = \left( {\frac{{a_{3}^{2} \omega_{3}^{2} }}{2} + \frac{{a_{1}^{2} \delta^{2} a_{3} }}{4}} \right)\left\{ {\sin \left[ {(2\varOmega + 2\omega_{3} )\tau + (\beta_{1} + 3\beta_{3} )} \right] - \sin \left[ {(\omega_{3} - \varOmega )\tau + (\beta_{3} - \beta_{1} )} \right]} \right\}$$
(50)
$$G_{2} = \left( { - \frac{{a_{3}^{2} \omega_{3}^{2} }}{2}} \right)\left\{ {\sin \left[ {(\varOmega + 3\omega_{3} )\tau + (\beta_{1} + 3\beta_{3} )} \right] - \sin \left[ {(3\omega_{3} - \varOmega )\tau + (3\beta_{3} - \beta_{1} )} \right]} \right\}$$
(51)
$$G_{3} = \left( { - \frac{{a_{3}^{2} \omega_{3} a_{1} \delta }}{4}} \right)\left\{ {\sin \left[ {(2\varOmega + 2\omega_{3} )\tau + (2\beta_{1} + 2\beta_{3} )} \right] - \sin (2\omega_{3} \tau + 2\beta_{3} )} \right\}$$
(52)
$$G_{4} = \left( { - \frac{{a_{1}^{2} \delta^{3} }}{8}} \right)\left\{ {\sin \left[ {(3\varOmega + \omega_{3} )\tau + (3\beta_{1} + \beta_{3} )} \right] - \sin \left[ {(\varOmega + \omega_{3} )\tau + (\beta_{3} + \beta_{1} )} \right]} \right\}$$
(53)
$$G_{5} = \left( { - \frac{{a_{1}^{2} \delta^{2} a_{3} }}{8}} \right)\left\{ {\sin \left[ {(3\varOmega - \omega_{3} )\tau + (3\beta_{1} - \beta_{3} )} \right] - \sin \left[ {(\varOmega - \omega_{3} )\tau + (\beta_{1} - \beta_{3} )} \right]} \right\}$$
(54)
$$G_{6} = \left( {\frac{{a_{3}^{2} \omega_{3}^{2} a_{1} \delta }}{4} + \frac{{a_{3}^{2} \delta^{2} }}{2} - \frac{{a_{1}^{3} \delta^{3} }}{8}} \right)\left[ {\sin (2\varOmega \tau + 2\beta_{1} )} \right]$$
(55)
$$G_{7} = \left( { - \frac{{a_{3}^{2} \omega_{3}^{2} \delta a_{1} }}{8}} \right)\left\{ {\sin \left[ {(2\varOmega + 2\omega_{3} )\tau + (2\beta_{1} + 2\beta_{3} )} \right] - \sin (2\omega_{3} \tau + 2\beta_{3} )} \right\}$$
(56)
$$G_{8} = \left( { - \frac{{a_{3}^{2} \omega_{3}^{2} \delta a_{1} }}{8}} \right)\left\{ {\sin (2\omega_{3} \tau + 2\beta_{3} ) - \sin \left[ {(2\omega_{3} - 2\varOmega )\tau + (2\beta_{3} - 2\beta_{1} )} \right]} \right\}$$
(57)
$$G_{9} = \left( {\frac{{a_{1}^{2} \delta^{2} a_{3} \omega_{3} }}{4}} \right)\left\{ {\sin \left[ {(3\varOmega - \omega_{3} )\tau + (3\beta_{1} - \beta_{3} )} \right] - \sin \left[ {(\varOmega - \omega_{3} )\tau + (\beta_{1} - \beta_{3} )} \right]} \right\}$$
(58)
$$G_{10} = \left( { - \frac{{a_{1}^{2} \delta a_{3} \omega_{3} }}{4}} \right)\left\{ {\sin \left[ {(3\varOmega + \omega_{3} )\tau + (3\beta_{1} + \beta_{3} )} \right] - \sin \left[ {(\varOmega + \omega_{3} )\tau + (\beta_{1} + \beta_{3} )} \right]} \right\}$$
(59)
$$G_{11} = \left( {\frac{{a_{1} \delta a_{3} \omega_{3} }}{8}} \right)\left\{ {\sin (4\varOmega \tau + 4\beta_{1} ) - \sin (2\varOmega \tau + 2\beta_{1} )} \right\}$$
(60)
$$G_{12} = \left( {\frac{{a^{\prime}_{3} \omega_{3} }}{2}} \right)\left\{ {\cos \left[ {(\omega_{3} - \varOmega + )\tau + (\beta_{3} - \beta_{1} )} \right] - \sin \left[ {(\omega_{3} - \varOmega )\tau + (\beta_{3} - \beta_{1} )} \right]} \right\}$$
(61)
$$G_{13} = \left( {\frac{{a_{3} \omega_{3} \beta^{\prime}_{3} }}{2}} \right)\left\{ {\sin \left[ {(\omega_{3} + \varOmega )\tau + (\beta_{3} + \beta_{1} )} \right] - \sin \left[ {(\omega_{3} - \varOmega )\tau + (\beta_{3} - \beta_{1} )} \right]} \right\}$$
(62)
$$G_{14} = \left( {\frac{{a_{3} \omega_{3}^{2} }}{2}} \right)\left\{ {\sin \left[ {(\omega_{3} + \varOmega )\tau + (\beta_{3} + \beta_{1} )} \right] - \sin \left[ {(\omega_{3} - \varOmega )\tau + (\beta_{3} - \beta_{1} )} \right]} \right\}$$
(63)
$$G^{\prime}_{1} = \left( {\frac{{a_{3}^{3} \omega_{3}^{2} }}{4} - \frac{{a_{3}^{3} \omega_{3}^{3} }}{8} + \frac{{a_{1}^{2} \delta^{2} \omega_{1}^{2} a_{3} }}{4}} \right)\left\{ {\cos \left[ {(\varOmega + \omega_{3} )\tau + (\beta_{1} + \beta_{3} )} \right]} \right\}$$
(64)
$$G^{\prime}_{2} = \left( { - \frac{{a_{3}^{3} \omega_{3}^{2} }}{4}} \right)\left\{ {\cos \left[ {(3\omega_{3} + \varOmega )\tau + (3\beta_{3} + \beta_{1} )} \right] + \cos \left[ {(3\omega_{3} - \varOmega )\tau + (3\beta_{3} - \beta_{1} )} \right]} \right\}$$
(65)
$$G^{\prime}_{3} = \left( {\frac{{a_{3}^{2} \omega_{3} a_{1} \delta }}{4}} \right)\left\{ \begin{array}{l} \left[ {\cos (2\omega_{3} \tau ) + \cos (2\omega_{3} - 2\varOmega )\tau + (2\beta_{3} - 2\beta_{1} )} \right] \hfill \\ - \left[ {\cos \left[ {(2\omega_{3} + 2\varOmega )\tau + (3\beta_{3} + 2\beta_{1} )} \right] + \cos (2\omega_{3} \tau + 2\beta_{3} )} \right] \hfill \\ \end{array} \right\}$$
(66)
$$G^{\prime}_{4} = \left( { - \frac{{a_{1}^{2} \omega_{1}^{3} a_{3} \delta^{2} }}{8}} \right)\left\{ \begin{array}{l} \left[ {\cos \left( {(3\varOmega + \omega_{3} )\tau + (3\beta_{1} + \beta_{3} )} \right) + \cos \left( {(\varOmega + \omega_{3} )\tau } \right)} \right] \hfill \\ + \left[ {\cos \left[ {(2\varOmega - \omega_{3} )\tau + (3\beta_{1} - \beta_{3} )} \right] + \cos \left[ {(\varOmega - \omega_{3} )\tau + (\beta_{1} - \beta_{3} )} \right]} \right] \hfill \\ \end{array} \right\}$$
(67)
$$G^{\prime}_{5} = \left( {\frac{{a_{3}^{2} \omega_{3} a_{1} \delta }}{4} + \frac{{a_{3}^{3} \omega_{1}^{2} \delta^{3} }}{4} - \frac{{a_{1}^{3} \delta^{3} \omega_{1}^{2} }}{8}} \right)\left[ {1 - \cos (2\varOmega \tau + 2\beta_{1} )} \right]$$
(68)
$$G^{\prime}_{6} = \left( { - \frac{{a_{3}^{2} \omega_{3}^{2} a_{1} \delta }}{8}} \right)\left\{ \begin{array}{l} \left[ {\cos \left( {(2\varOmega + \omega_{3} )\tau + (2\beta_{1} + 2\beta_{3} )} \right) + \cos \left( {2\omega_{3} \tau + 2\beta_{3} } \right)} \right] \hfill \\ + \left[ {\cos (2\omega_{3} \tau + 2\beta_{3} ) + \cos \left[ {(2\omega_{3} - 2\varOmega )\tau + (2\beta_{3} - 2\beta_{1} )} \right]} \right] \hfill \\ \end{array} \right\}$$
(69)
$$G^{\prime}_{7} = \left( {\frac{{a_{1}^{2} \omega_{3}^{2} a_{3} \delta }}{4}} \right)\left\{ \begin{array}{l} \left[ {\cos \left( {(3\varOmega - \omega_{3} )\tau + (3\beta_{1} - \beta_{3} )} \right) + \cos \left( {(\varOmega - \omega_{3} )\tau + (\beta_{1} - \beta_{3} )} \right)} \right] \hfill \\ - \left[ {\cos \left( {(\omega_{3} + 3\varOmega )\tau + (3\beta_{1} + \beta_{3} )} \right) + \cos \left[ {(\omega_{3} + \varOmega )\tau + (\beta_{3} + \beta_{1} )} \right]} \right] \hfill \\ \end{array} \right\}$$
(70)
$$\begin{aligned} G^{\prime}_{8} &= \left( { - \frac{{a_{3}^{3} \omega_{1}^{2} \delta^{3} }}{8}} \right)\left[ {\cos \left( {4\varOmega \tau + 4\beta_{1} } \right) + \cos \left( {2\varOmega \tau + 2\beta_{1} } \right)} \right] \\ & \quad + \, \left( {\frac{{a^{\prime}_{3} \omega_{3} }}{2}} \right)\left[ {\sin \left( {\left( {\varOmega + \omega_{3} } \right)\tau + (\beta_{1} + \beta_{3} )} \right) - \sin \left( {\left( {\varOmega - \omega_{3} } \right)\tau + (\beta_{1} - \beta_{3} )} \right)} \right] \\ \end{aligned}$$
(71)
$$G^{\prime}_{9} = \left( {\frac{{a_{3} \omega_{3} \beta^{\prime}_{3} }}{2}} \right)\left\{ {\cos \left[ {(\varOmega + \omega_{3} )\tau + (\beta_{3} + \beta_{1} )} \right] + \cos \left[ {(\omega_{3} - \varOmega )\tau + (\beta_{3} - \beta_{1} )} \right]} \right\}$$
(72)
$$G^{\prime}_{10} = \left( {\frac{{a_{3} \omega_{3}^{2} }}{2}} \right)\left\{ {\cos \left[ {(\varOmega + \omega_{3} )\tau + (\beta_{3} + \beta_{1} )} \right] + \cos \left[ {(\omega_{3} - \varOmega )\tau + (\beta_{3} - \beta_{1} )} \right]} \right\}$$
(73)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tusset, A.M., Bueno, Á.M., dos Santos, J.P.M. et al. A non-ideally excited pendulum controlled by SDRE technique. J Braz. Soc. Mech. Sci. Eng. 38, 2459–2472 (2016). https://doi.org/10.1007/s40430-016-0517-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0517-7

Keywords

Navigation