Skip to main content
Log in

An analytical procedure for transient response determination of annular FSDT and CPT nanoplates via nonlocal elasticity theory

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, an analytical procedure is introduced for transient response determination of annular nanoplates under impulsive transverse load and radial stress. The equations of motion are extracted using the Hamilton’s principle by small deflection assumption and considering the Eringen nonlocal elasticity theory in conjunction with the first order shear deformation theory as the displacement field. These equations which are a system of partial differential equations with variable coefficients are solved using the perturbation technique and the eigenfunction expansion method. The results are compared with those obtained by the classical plate theory and finite elements method and the effects of nonlocal parameter, radial stress and geometries on the response are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10(1):1–16. doi:10.1016/0020-7225(72)90070-5

    Article  MathSciNet  MATH  Google Scholar 

  2. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710. doi:10.1063/1.332803

    Article  Google Scholar 

  3. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248. doi:10.1016/0020-7225(72)90039-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Eringen AC (2002) Nonlocal continuum field theories. Springer, New York. doi:10.1007/b97697

    MATH  Google Scholar 

  5. Zhao YB, Wei GW (2002) DSC analysis of rectangular plates with non-uniform boundary conditions. J Sound Vib 255(2):203–228. doi:10.1006/jsvi.2001.4150

    Article  MathSciNet  Google Scholar 

  6. Wang CM, Duan WH (2008) Free vibration of nanorings/arches based on nonlocal elasticity. J Appl Phys 104(1):014303. doi:10.1063/1.2951642

    Article  Google Scholar 

  7. Murmu T, Pradhan SC (2009) Small-scale effect on the free in-plane vibration of nanoplates by nonlocal continuum model. Phys E 41(8):1628–1633. doi:10.1016/j.physe.2009.05.013

    Article  Google Scholar 

  8. Pradhan SC, Phadikar JK (2009) Nonlocal elasticity theory for vibration of nanoplates. J Sound Vib 325(1–2):206–223. doi:10.1016/j.jsv.2009.03.007

    Article  MATH  Google Scholar 

  9. Reddy JN (2010) Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int J Eng Sci 48(11):1507–1518. doi:10.1016/j.ijengsci.2010.09.020

    Article  MathSciNet  MATH  Google Scholar 

  10. Ansari R, Sahmani S, Arash B (2010) Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys Lett A 375(1):53–62. doi:10.1016/j.physleta.2010.10.028

    Article  Google Scholar 

  11. Assadi A, Farshi B (2010) Vibration characteristics of circular nanoplates. J Appl Phys 108(7):074312. doi:10.1063/1.3486514

    Article  Google Scholar 

  12. Shen H-S (2011) Nonlocal plate model for nonlinear analysis of thin films on elastic foundations in thermal environments. Compos Struct 93(3):1143–1152. doi:10.1016/j.compstruct.2010.10.009

    Article  Google Scholar 

  13. Arash B, Wang Q, Liew KM (2012) Wave propagation in graphene sheets with nonlocal elastic theory via finite element formulation. Comput Methods Appl Mech Eng 223–224:1–9. doi:10.1016/j.cma.2012.02.002

    Article  MathSciNet  MATH  Google Scholar 

  14. Malekzadeh P, Farajpour A (2012) Axisymmetric free and forced vibrations of initially stressed circular nanoplates embedded in an elastic medium. Acta Mech 223(11):2311–2330. doi:10.1007/s00707-012-0706-0

    Article  MathSciNet  MATH  Google Scholar 

  15. Sapsathiarn Y, Rajapakse R (2013) Finite-element modeling of circular nanoplates. J Nanomech Micromech 3(3):59–66. doi:10.1061/(ASCE)NM.2153-5477.0000056

    Article  Google Scholar 

  16. Bedroud M, Hosseini-Hashemi S, Nazemnezhad R (2013) Buckling of circular/annular Mindlin nanoplates via nonlocal elasticity. Acta Mech 224(11):2663–2676. doi:10.1007/s00707-013-0891-5

    Article  MathSciNet  MATH  Google Scholar 

  17. Jung W-Y, Han S-C (2014) Nonlocal elasticity theory for transient analysis of higher-order shear deformable nanoscale plates. J Nanomater 2014:8. doi:10.1155/2014/208393

    Google Scholar 

  18. Zhang Y, Zhang LW, Liew KM, Yu JL (2015) Transient analysis of single-layered graphene sheet using the kp-Ritz method and nonlocal elasticity theory. Appl Math Comput 258:489–501. doi:10.1016/j.amc.2015.02.023

    MathSciNet  MATH  Google Scholar 

  19. Sadd MH (2009) Elasticity theory applications and numerics. Elsevier, Amsterdam

    Google Scholar 

  20. Lee HP, Ng TY (1995) Axisymmetric dynamic stability of an annular plate subject to pulsating conservative radial loads. Appl Acoust 45(2):167–179. doi:10.1016/0003-682X(94)00044-V

    Article  Google Scholar 

  21. Wang CM, Reddy JN, Lee KH (2000) Shear deformable beams and plates: relationships with classical solutions. Elsevier Science, Amsterdam

    MATH  Google Scholar 

  22. Nayfeh AH (1993) Introduction to perturbation techniques. John Wiley, New York

    MATH  Google Scholar 

  23. Hagedorn P, DasGupta A (2007) Vibrations and waves in continuous mechanical systems. Wiley, England

    Book  MATH  Google Scholar 

  24. ANSYS (2009) Element Reference. USA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Khadem Moshir.

Additional information

Technical Editor: Kátia Lucchesi Cavalca Dedini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moshir, S.K., Eipakchi, H. An analytical procedure for transient response determination of annular FSDT and CPT nanoplates via nonlocal elasticity theory. J Braz. Soc. Mech. Sci. Eng. 38, 2277–2288 (2016). https://doi.org/10.1007/s40430-015-0480-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0480-8

Keywords

Navigation