Skip to main content

Advertisement

Log in

One-step In-situ Synthesis of Vacancy-rich CoFe2O4@Defective Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Developing efficient catalysts toward both oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) is the core task for rechargeable metal-air batteries. Although integration of two active components should be an effective method to produce the bifunctional catalysts in principle, traditional techniques still can not attain fine tunable surface structure during material-hybridization process. Herein, we present a facile short-time in-situ argon(Ar) plasma strategy to fabricate a high-performance bifunctional hybrid catalyst of vacancy-rich CoFe2O4 synergized with defective graphene(r-CoFe2O4@DG). Reflected by the low voltage gap of 0.79 V in two half-reaction measurements, the striking capability to catalyze ORR/OER endows it excellent and durable performance in rechargeable Zn-air batteries, with a maximum power density of 155.2 mW/cm2 and robust stability(up to 60 h). Further experimental and theoretical studies validate its remarkable bifunctional energetics root from plasma-induced surface vacancy defects and interfacial charge polarization between DG and CoFe2O4. This work offers more opportunities for reliable clean energy systems by rational interfacial and defect engineering on catalyst design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dou Y., Zhang L., Xu X., Sun Z., Liao T., Dou S. X., Chem. Soc. Rev., 2017, 46, 7338

    Article  CAS  Google Scholar 

  2. Liu L., Corma A., Chem. Rev., 2018, 118, 4981

    Article  CAS  Google Scholar 

  3. Tan H., Tang J., Kim J., Kaneti Y. V., Kang Y. M., Sugahara Y., Yamauchi Y., J. Mater. Chem. A, 2019, 7, 1380

    Article  CAS  Google Scholar 

  4. Li Y., Dai H., Chem. Soc. Rev., 2014, 43, 5257

    Article  CAS  Google Scholar 

  5. Zhang J., Zhao Z., Xia Z., Dai L., Nat. Nano, 2015, 10, 444

    Article  CAS  Google Scholar 

  6. Fu G., Chen Y., Cui Z., Li Y., Zhou W., Xin S., Tang Y., Goodenough J. B., Nano Lett., 2016, 16, 6516

    Article  CAS  Google Scholar 

  7. Wu L. L., Wang Q. S., Li J., Long Y., Liu Y., Song S. Y., Zhang H. J., Small, 2018, 14, 1704035

    Article  Google Scholar 

  8. Liu Y., Wang Q., Wu L., Long Y., Li J., Song S., Zhang H., Cryst. Growth Des., 2018, 18, 3404

    Article  CAS  Google Scholar 

  9. Kibsgaard J., Chorkendorff I., Nat. Energy, 2019, 4, 430

    Google Scholar 

  10. Zhang L., Doyle-Davis K., Sun X., Energy Environ. Sci., 2019, 12, 492

    Article  CAS  Google Scholar 

  11. Zhao Q., Yan Z., Chen C., Chen J., Chem. Rev., 2017, 117, 10121

    Article  CAS  Google Scholar 

  12. Cai Z., Bi Y., Hu E., Liu W., Dwarica N., Tian Y., Li X., Kuang Y., Li Y., Yang X. Q., Wang H., Sun X., Adv. Energy Mater., 2017, 8, 1701694

    Article  Google Scholar 

  13. Liu Y., Li J., Li F., Li W., Yang H., Zhang X., Liu Y., Ma J., J. Mater. Chem. A, 2016, 4, 4472

    Article  CAS  Google Scholar 

  14. Jiang Y., Yang L., Sun T., Zhao J., Lyu Z., Zhuo O., Wang X., Wu Q., Ma J., Hu Z., ACS Catal., 2015, 5, 6707

    Article  CAS  Google Scholar 

  15. Jia Y., Zhang L., Du A., Gao G., Chen J., Yan X., Brown C. L., Yao X., Adv. Mater., 2016, 28, 9532

    Article  CAS  Google Scholar 

  16. Jia Y., Zhang L., Zhuang L., Liu H., Yan X., Wang X., Liu J., Wang J., Zheng Y., Xiao Z., Taran E., Chen J., Yang D., Zhu Z., Wang S., Dai L., Yao X., Nat. Catal., 2019, 2, 688

    Article  CAS  Google Scholar 

  17. Wang X., Li Y., Jin T., Meng J., Jiao L., Zhu M., Chen J., Nano Lett., 2017, 17, 7989

    Article  CAS  Google Scholar 

  18. Lu X. F., Gu L. F., Wang J. W., Wu J. X., Liao P. Q., Li G. R., Adv. Mater., 2017, 29, 1604437

    Article  Google Scholar 

  19. Kim J. H., Jang Y. J., Kim J. H., Jang J. W., Choi S. H., Lee J. S., Nanoscale, 2015, 7, 19144

    Article  CAS  Google Scholar 

  20. Dou S., Tao L., Wang R., El Hankari S., Chen R., Wang S., Adv. Mater., 2018, 30, 1705850

    Article  Google Scholar 

  21. Jia Y., Jiang K., Wang H., Yao X., Chem, 2019, 5, 1371

    Article  CAS  Google Scholar 

  22. Chen D., Qiao M., Lu Y., Hao L., Liu D., Dong C., Li Y., Wang S., Angew. Chem. Int. Ed., 2018, 57, 8691

    Article  CAS  Google Scholar 

  23. Nong H. N., Reier T., Oh H. S., Gliech M., Paciok P., Vu T. H. T., Teschner D., Heggen M., Petkov V., Schlögl R., Jones T., Strasser P., Nat. Catal., 2018, 1, 841

    Article  CAS  Google Scholar 

  24. Wang Y., Zhang Y., Liu Z., Xie C., Feng S., Liu D., Shao M., Wang S., Angew. Chem. Int. Ed., 2017, 56, 5961

    Article  Google Scholar 

  25. Wang X., Zhuang L., He T., Jia Y., Zhang L., Yan X., Gao M., Du A., Zhu Z., Yao X., Yu S., iScience, 2018, 7, 145

    Article  CAS  Google Scholar 

  26. Jia Y., Zhang L., Gao G., Chen H., Wang B., Zhou J., Soo M. T., Hong M., Yan X., Qian G., Zou J., Du A., Yao X., Adv. Mater., 2017, 29, 1700017

    Article  Google Scholar 

  27. Wei S., Li A., Liu J. C., Li Z., Chen W., Gong Y., Zhang Q., Cheong W. C., Wang Y., Zheng L., Xiao H., Chen C., Wang D., Peng Q., Gu L., Han X., Li J., Li Y., Nat. Nano, 2018, 13, 856

    Article  CAS  Google Scholar 

  28. Ma R., Liang J., Takada K., Sasaki T., J. Am. Chem. Soc., 2011, 133, 613

    Article  CAS  Google Scholar 

  29. Lu X., Zhao C., Nat. Commun., 2015, 6, 6616

    Article  CAS  Google Scholar 

  30. Gu Z., Xiang X., Fan G., Li F., J. Phys. Chem. C, 2008, 112, 18459

    Article  CAS  Google Scholar 

  31. Lu X., Zeng Y., Yu M., Zhai T., Liang C., Xie S., Balogun M. S., Tong Y., Adv. Mater., 2014, 26, 3148

    Article  CAS  Google Scholar 

  32. Kudin K. N., Ozbas B., Schniepp H. C., Prud’homme R. K., Aksay I. A., Car R., Nano Lett., 2008, 8, 36

    Article  CAS  Google Scholar 

  33. Wei L., Karahan H. E., Zhai S., Liu H., Chen X., Zhou Z., Lei Y., Liu Z., Chen Y., Adv. Mater., 2017, 29, 1701410

    Article  Google Scholar 

  34. Lin Y., Yang L., Zhang Y., Jiang H., Xiao Z., Wu C., Zhang G., Jiang J., Song L., Adv. Energy Mater., 2018, 8, 1703623

    Article  Google Scholar 

  35. Wang X., Zhuang L., Jia Y., Liu H., Yan X., Zhang L., Yang D., Zhu Z., Yao X., Angew. Chem. Int. Ed., 2018, 57, 16421

    Article  CAS  Google Scholar 

  36. Li G., Blake G. R., Palstra T. T. M., Chem. Soc. Rev., 2017, 46, 1693

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the scientific and technical assistance of the Australian Microscopy and Microanalysis Research Facility at the UQ Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Yao.

Additional information

Supported by the Project of the Australia Research Council(No.ARC DP200103043), the “111” Project of China (Nos.B07016, B17020) and the ARC Discovery Early Career Researcher Award(No.ARC DE180101030).

Supporting Information

40242_2020_56_MOESM1_ESM.pdf

One-step in-situ Synthesis of Vacancy-Rich CoFe2O4@Defective Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhuang, L., Jia, Y. et al. One-step In-situ Synthesis of Vacancy-rich CoFe2O4@Defective Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. Chem. Res. Chin. Univ. 36, 479–487 (2020). https://doi.org/10.1007/s40242-020-0056-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-020-0056-8

Keywords

Navigation