Skip to main content
Log in

Dissipative particle dynamics simulation of onion phase in star-block copolymer

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

A dissipative particle dynamics simulation technique was used to investigate the effect of molecular architecture of star-block copolymer on the patterned structure in a nanodroplet. With increasing the ratio of solvophilic to block length to solvophobic block length(R H/T), solvophobic sphere, ordered hexagonal phase, onion phase, perforated onion phase and flocculent phase are formed, respectively. Since onion phase has potential application in controlled drug release, it has received wide attention experimentally and theoretically. Our simulation indicates onion phase forms at a certain R H/T(close to but less than 1). A star-block copolymer molecule has two conformations in onion phase: either fully located in a shell or shared by two neighboring shells. Central structure affects onion’s final shape. The molecular number of the copolymer in each shell is a quadratic function of the shell’s radius. The arm number of star-block copolymer has little influence on onion’s structure, but slightly affects the solvent content. Additionally, we studied the influence of arm length on onion’s structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Darling S. B., Prog. Polym. Sci., 2007, 32, 1152

    Article  CAS  Google Scholar 

  2. Xu J., Park S., Wang S., Russell T. P. Ocko B. M. Checco A., Adv. Mater., 2010, 22, 2268

    Article  CAS  Google Scholar 

  3. Liu Y. T., Li Z. W. Lü Z. Y. Li Z. S., Chem. J. Chinese Universities, 2008, 29(6), 1200

    CAS  Google Scholar 

  4. Smulders W., Monteiro M. J., Macromolecules, 2004, 37, 4474

    Article  CAS  Google Scholar 

  5. Bates F. S. Fredrickson G. H., Annu. Rev. Phys. Chem., 1990, 41, 525

    Article  CAS  Google Scholar 

  6. Jain S., Bates F. S., Science, 2003, 300, 460

    Article  CAS  Google Scholar 

  7. Malmsten M., Lindman B., Macromolecules, 1992, 25, 5440

    Article  CAS  Google Scholar 

  8. Wu S., Sun T., Zhou P., Zhou J., Acta Phys. Chim. Sin., 2012, 28, 978

    CAS  Google Scholar 

  9. Zipfel J., Lindner P., Tsianou M., Alexandridis P., Richtering W., Langmuir, 1999, 15, 2599

    Article  CAS  Google Scholar 

  10. Song A., Dong S., Jia X., Hao J., Liu W., Liu T., Angew. Chem., Int. Ed., 2005, 44, 4018

    Article  CAS  Google Scholar 

  11. El Rassy H., Belamie E., Livage J., Coradin T., Langmuir, 2005, 21, 8584

    Article  Google Scholar 

  12. Courbin L., Delville J., Rouch J., Panizza P., Phys. Rev. Lett., 2002, 89, 148305

    Article  CAS  Google Scholar 

  13. Raju V. R. Menezes E. V. Marin G., Graessley W. W. Fetters L. J., Macromolecules, 1981, 14, 1668

    Article  CAS  Google Scholar 

  14. Pietrasik J., Dong H., Matyjaszewski K., Macromolecules, 2006, 39, 6384

    Article  CAS  Google Scholar 

  15. Smeijers A. F. Markvoort A. J. Pieterse K., Hilbers P. A. J., J. Phys. Chem. B, 2006, 110, 13212

    Article  CAS  Google Scholar 

  16. Grafmüller A., Shillcock J., Lipowsky R., Biophys. J., 2009, 96, 2658

    Article  Google Scholar 

  17. He Y. D. Qian H. J. Lü Z. Y. Li Z. S., Polymer, 2007, 48, 3601

    Article  CAS  Google Scholar 

  18. Hoogerbrugge P. J. Koelman J., Europhys. Lett., 1992, 19, 155

    Article  Google Scholar 

  19. Koelman J., Hoogerbrugge P. J., Europhys. Lett., 1993, 21, 363

    Article  CAS  Google Scholar 

  20. Yamamoto S., Hyodo S., J. Chem. Phys., 2005, 122, 204907

    Article  Google Scholar 

  21. Groot R. D. Warren P. B., J. Chem. Phys., 1997, 107, 4423

    Article  CAS  Google Scholar 

  22. Poree D. E. Giles M. D. Lawson L. B. He J., Grayson S. M., Biomacromolecules, 2011, 12, 898

    Article  CAS  Google Scholar 

  23. Chiefari J., Chong Y. K. Ercole F., Krstina J., Jeffery J., Le T. P. T. Mayadunne R. T. A. Meijs G. F. Moad C. L. Moad G., Macromolecules, 1998, 31, 5559

    Article  CAS  Google Scholar 

  24. Saunders R. S. Cohen R. E. Wong S. J. Schrock R. R., Macromolecules, 1992, 25, 2055

    Article  CAS  Google Scholar 

  25. Illya G., Lipowsky R., Shillcock J. C., J. Chem. Phys., 2006, 125, 114710

    Article  CAS  Google Scholar 

  26. Wu S., Guo H., J. Phys. Chem. B, 2009, 113, 589

    Article  CAS  Google Scholar 

  27. Wu S., Guo H., Sci. China Ser B, Chem., 2008, 51, 743

    Article  CAS  Google Scholar 

  28. Yamamoto S., Maruyama Y., Hyodo S., J. Chem. Phys., 2002, 116, 5842

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-gui Wu.

Additional information

Supported by the National Natural Science Foundation of China(No.51209024), the Science and Technology Plan of Sichuan Province, China(No.2010JY0122), the Science Research Fund of Sichuan Normal University, China(No.10MSL02) and 251 Key Talent Program of Sichuan Normal University, China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Sg., Du, Tt. Dissipative particle dynamics simulation of onion phase in star-block copolymer. Chem. Res. Chin. Univ. 29, 171–176 (2013). https://doi.org/10.1007/s40242-013-2042-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-013-2042-x

Keywords

Navigation