Skip to main content

Advertisement

Log in

Electricity Production in Microbial Fuel Cell Subjected to Different Operational Modes

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The effects of inoculum species, substrate concentration, temperature, and cathodic electron acceptors on electricity production of microbial fuel cells (MFCs) were investigated in terms of start-up time and power output. When inoculated with aeration tank sludge, this MFC outperformed the cell that was inoculated with anaerobic sludge in terms of start-up time and power output. After running for a certain time period, the dominant populations of the two MFCs varied significantly. Within the tested range of substrate concentration (200–1800 mg L−1), the voltage output increased and the time span of the electricity generation lengthened with increasing substrate concentration. As the temperature declined from 35 to 10 °C, the maximum power density reduced from 2.229 to 1.620 W m−3, and anodic polarization resistance correspondingly dropped from 118 to 98 Ω. The voltage output of MFC–Cu2+ was 0.447 V, which is slightly lower than that achieved with MFC–[Fe(CN)6]3− (0.492 V), thereby indicating that MFCs could be used to treat wastewater containing Cu2+ pollutant in the cathode chamber with removal of organics in anode chamber and simultaneous electricity generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Haase, R. Müller, D. Landgrebe, P. Scholz, M. Riemer, Acta Metall. Sin. (Engl. Lett.) 28, 1518 (2015)

    Article  Google Scholar 

  2. D. Maheswari, P. Venkatachalam, Acta Metall. Sin. (Engl. Lett.) 28, 354 (2015)

    Article  Google Scholar 

  3. Z.S. Lv, D.H. Xie, F.S. Li, Y. Hu, C.H. Wei, C.H. Feng, J. Power Sources 246, 642 (2014)

    Article  Google Scholar 

  4. R.D. Cusick, P.D. Kiely, B.E. Logan, Int. J. Hydrog. Energy 35, 8855 (2010)

    Article  Google Scholar 

  5. C.T. Wang, W.J. Chen, R.Y. Huang, Int. J. Hydrog. Energy 35, 7217 (2010)

    Article  Google Scholar 

  6. B.E. Logan, C. Murano, K. Scott, N.D. Gray, I.M. Head, Water Res. 39, 942 (2005)

    Article  Google Scholar 

  7. D. Juang, APCBEE Proced. 1, 2 (2012)

    Article  Google Scholar 

  8. S.B. Velasquez-Orta, I.M. Head, T.P. Curtis, K. Scott, Bioresour. Technol. 102, 5105 (2011)

    Article  Google Scholar 

  9. A. Patil Sunil, F. Harnisch, B. Kapadnis, U. Schröder, Biosens. Bioelectron. 26, 803 (2010)

    Article  Google Scholar 

  10. S. Puig, M. Serra, M. Coma, M. Cabré, M.D. Balaguer, J. Colprim, Bioresour. Technol. 101, 9594 (2010)

    Article  Google Scholar 

  11. Y.Q. Wang, B. Li, L.Z. Zeng, D. Cui, X.D. Xiang, W.S. Li, Biosens. Bioelectron. 41, 582 (2013)

    Article  Google Scholar 

  12. S.L. Chen, G.H. He, S.J. He, U. Schröder, H.Q. Hou, Biosens. Bioelectron. 34, 282 (2012)

    Article  Google Scholar 

  13. D.A. Jadhav, D.A. Ghadge, D. Mondal, M.M. Ghangrekar, Bioresour. Technol. 154, 330 (2014)

    Article  Google Scholar 

  14. L.L. Wei, H.L. Han, J.Q. Shen, Int. J. Hydrog. Energy 37, 12980 (2012)

    Article  Google Scholar 

  15. R.A. Timmers, D.P. Strik, H.V. Hamelers, C.J. Buisman, Electrochim. Acta 72, 165 (2012)

    Article  Google Scholar 

  16. P.Y. Zhang, Z.L. Liu, J. Power Sources 195, 8013 (2010)

    Article  Google Scholar 

  17. V.R. Nimje, C.Y. Chen, H.R. Chen, C.C. Chen, Y.M. Huang, M.J. Tseng, K.C. Cheng, Y.F. Chang, Bioresour. Technol. 104, 315 (2012)

    Article  Google Scholar 

  18. S.F. Ketep, A. Bergel, M. Bertrand, W. Achouak, E. Fourest, Biochem. Eng. J. 73, 12 (2013)

    Article  Google Scholar 

  19. L.X. Zhang, C.S. Liu, L. Zhuang, W.S. Li, S.G. Zhou, J.T. Zhang, Biosens. Bioelectron. 24, 2825 (2009)

    Article  Google Scholar 

  20. Y.X. Liu, J.Y. Shen, L.P. Huang, D. Wu, J. Hazard. Mater. 262, 1 (2013)

    Article  Google Scholar 

  21. L. Lu, D.F. Xing, N.Q. Ren, Water Res. 46, 2425 (2012)

    Article  Google Scholar 

  22. Z.D. Liu, H.R. Li, Biochem. Eng. J. 36, 209 (2007)

    Article  Google Scholar 

  23. Y.P. Mao, L.H. Zhang, D.M. Li, H.F. Shi, Y.D. Liu, L.K. Cai, Electrochim. Acta 55, 7804 (2010)

    Article  Google Scholar 

  24. J.N. Jia, Y. Tang, B.F. Liu, D. Wu, N.Q. Ren, D.F. Xing, Bioresour. Technol. 144, 94 (2013)

    Article  Google Scholar 

  25. H. Richter, K. McCarthy, K.P. Nevin, J.P. Johnson, V.M. Rotello, D.R. Lovley, Langmuir 24, 4376 (2008)

    Article  Google Scholar 

  26. V.J. Watson, B.E. Logan, Biotechnol. Bioeng. 105, 489 (2010)

    Article  Google Scholar 

  27. V.B. Oliveira, M. Simões, L.F. Melo, A.M.F.R. Pinto, Biochem. Eng. J. 73, 53 (2013)

    Article  Google Scholar 

  28. A.L. Guerrero, K. Scott, I.M. Head, F. Mateo, A. Ginesta, C. Godinez, Fuel 89, 3985 (2010)

    Article  Google Scholar 

  29. A.G. Campo, J. Lobato, P. Cañizares, M.A. Rodrigo, F.J.F. Morales, Appl. Energy 101, 213 (2013)

    Article  Google Scholar 

  30. Z.H. Wen, S.Q. Ci, S. Mao, S.M. Cui, G.H. Lu, K.H. Yu, S.L. Luo, Z. He, J.H. Chen, J. Power Sources 234, 100 (2013)

    Article  Google Scholar 

  31. L.H. Liu, O. Tsyganova, D.J. Lee, A. Su, J.S. Chang, A.J. Wang, N.Q. Ren, Int. J. Hydrog. Energy 37, 15792 (2012)

    Article  Google Scholar 

  32. C.H. Feng, Q.Y. Wan, Z.S. Lv, X.J. Yue, Y.F. Chen, C.H. Wei, Biosens. Bioelectron. 26, 3953 (2011)

    Article  Google Scholar 

  33. M. Ghasemi, W.R.W. Daud, N. Mokhtarian, A. Mayahi, M. Ismail, F. Anisi, J. Alam, Int. J. Hydrog. Energy 38, 9525 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China and Shenhua Group Corp. (Grant No. U1261103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Hai Liang.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, HY., Yang, HM., Liu, X. et al. Electricity Production in Microbial Fuel Cell Subjected to Different Operational Modes. Acta Metall. Sin. (Engl. Lett.) 29, 483–490 (2016). https://doi.org/10.1007/s40195-016-0412-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0412-3

Keywords

Navigation