Skip to main content

Advertisement

Log in

Patient-Controlled Analgesia in High-Risk Populations: Implications for Safety

  • Patient Safety in Anesthesia (SJ Brull, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We aim to (1) identify the benefits and risks of patient-controlled analgesia and (2) analyze the risks of using various modalities of PCA among patients with traumatic injuries, sleep apnea, chronic pain, or neuropathies.

Recent Findings

An oral sufentanil PCA system may be as effective as an intravenous PCA. The overall incidence of PCA device error is less than 1%. While IV PCA may not be more effective than nurse-administered opioid among trauma patients, thoracic epidural analgesia may improve outcomes. Patients with obstructive sleep apnea or obesity are at increased risk of opioid-induced respiratory depression (OIRD). Patients with chronic pain or opioid tolerance, who may require higher opioid dosing, benefit from close monitoring. Continuous pulse oximetry and capnography can improve detection of OIRD. Risk of nerve injury after nerve block may be higher among patients with peripheral neuropathy, but this risk may be decreased with lower local anesthetic total dose or concentration.

Summary

PCA, whether in intravenous, neuraxial, or peripheral nerve form, can have a significant role in postoperative analgesia. Regardless of technique, use of a PCA method should account for the potential risks to the patient, particularly in the presence of comorbidities such as sleep apnea, polytrauma, chronic pain, and preexisting neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nardi-Hiebl S, Eberhart LHJ, Gehling M, Koch T, Schlesinger T, Kranke P. Quo Vadis PCA? A review on current concepts, economic considerations, patient-related aspects, and future development with respect to patient-controlled analgesia. Anesthesiol Res Pract. 2020;2020:9201967–7. https://doi.org/10.1155/2020/9201967.

  2. Smythe M. Patient-controlled analgesia: a review. Pharmacotherapy. 1992;12(2):132–43.

    CAS  PubMed  Google Scholar 

  3. Grass JA. Patient-controlled analgesia. Anesth Analg. 2005;101(5 Suppl):S44–61. https://doi.org/10.1213/01.ane.0000177102.11682.20.

    Article  CAS  PubMed  Google Scholar 

  4. • McNicol ED, Ferguson MC, Hudcova J. Patient controlled opioid analgesia versus non-patient controlled opioid analgesia for postoperative pain. Cochrane Database Syst Rev. 2015(6):CD003348. doi: https://doi.org/10.1002/14651858.CD003348.pub3. This important Cochrane systematic review provides moderate to low quality evidence that PCA provides slightly better pain control and patient satisfaction when compared to non-patient controlled analgesia.

  5. Palmer PP, Miller RD. Current and developing methods of patient-controlled analgesia. Anesthesiol Clin. 2010;28(4):587–99. https://doi.org/10.1016/j.anclin.2010.08.010.

    Article  PubMed  Google Scholar 

  6. Panchal SJ, Damaraju CV, Nelson WW, Hewitt DJ, Schein JR. System-related events and analgesic gaps during postoperative pain management with the fentanyl iontophoretic transdermal system and morphine intravenous patient-controlled analgesia. Anesth Analg. 2007;(5):105, 1437–1141, table of contents. https://doi.org/10.1213/01.ane.0000281442.36582.81.

  7. Katz P, Takyar S, Palmer P, Liedgens H. Sublingual, transdermal and intravenous patient-controlled analgesia for acute post-operative pain: systematic literature review and mixed treatment comparison. Curr Med Res Opin. 2017;33(5):899–910. https://doi.org/10.1080/03007995.2017.1294559.

    Article  CAS  PubMed  Google Scholar 

  8. Melson TI, Boyer DL, Minkowitz HS, Turan A, Chiang YK, Evashenk MA, et al. Sufentanil sublingual tablet system vs. intravenous patient-controlled analgesia with morphine for postoperative pain control: a randomized, active-comparator trial. Pain Pract. 2014;14(8):679–88. https://doi.org/10.1111/papr.12238.

  9. van Veen DE, Verhelst CC, van Dellen RT, Koopman J. Sublingual sufentanil (Zalviso) patient-controlled analgesia after total knee arthroplasty: a retrospective comparison with oxycodone with or without dexamethasone. J Pain Res. 2018;11:3205–10. https://doi.org/10.2147/JPR.S185197.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Morlion B, Schafer M, Betteridge N, Kalso E. Non-invasive patient-controlled analgesia in the management of acute postoperative pain in the hospital setting. Curr Med Res Opin. 2018;34(7):1179–86. https://doi.org/10.1080/03007995.2018.1462785.

    Article  PubMed  Google Scholar 

  11. Sng BL, Sia ATH. Maintenance of epidural labour analgesia: the old, the new and the future. Best Pract Res Clin Anaesthesiol. 2017;31(1):15–22. https://doi.org/10.1016/j.bpa.2017.01.002.

    Article  PubMed  Google Scholar 

  12. Sakai N, Nakatsuka M, Tomita T. Patient-controlled bolus femoral nerve block after knee arthroplasty: quadriceps recovery, analgesia, local anesthetic consumption. Acta Anaesthesiol Scand. 2016;60(10):1461–9. https://doi.org/10.1111/aas.12778.

    Article  CAS  PubMed  Google Scholar 

  13. Viscusi ER. Patient-controlled drug delivery for acute postoperative pain management: a review of current and emerging technologies. Reg Anesth Pain Med. 2008;33(2):146–58. https://doi.org/10.1016/j.rapm.2007.11.005.

    Article  PubMed  Google Scholar 

  14. Conjeevaram R, Banga AK, Zhang L. Electrically modulated transdermal delivery of fentanyl. Pharm Res. 2002;19(4):440–4. https://doi.org/10.1023/a:1015135426838.

    Article  CAS  PubMed  Google Scholar 

  15. Sinatra RS, Viscusi ER, Ding L, Danesi H, Jones JB, Grond S. Meta-analysis of the efficacy of the fentanyl iontophoretic transdermal system versus intravenous patient-controlled analgesia in postoperative pain management. Expert Opin Pharmacother. 2015;16(11):1607–13. https://doi.org/10.1517/14656566.2015.1054279.

    Article  CAS  PubMed  Google Scholar 

  16. Thompson JP, Thompson DF. Nebulized fentanyl in acute pain: a systematic review. Ann Pharmacother. 2016;50(10):882–91. https://doi.org/10.1177/1060028016659077.

    Article  CAS  PubMed  Google Scholar 

  17. Peng PW, Sandler AN. A review of the use of fentanyl analgesia in the management of acute pain in adults. Anesthesiology. 1999;90(2):576–99. https://doi.org/10.1097/00000542-199902000-00034.

    Article  CAS  PubMed  Google Scholar 

  18. Weisman RS, Missair A, Pham P, Gutierrez JF, Gebhard RE. Accuracy and consistency of modern elastomeric pumps. Reg Anesth Pain Med. 2014;39(5):423–8. https://doi.org/10.1097/AAP.0000000000000130.

    Article  PubMed  Google Scholar 

  19. Grissinger M. Improved safety needed in handling elastomeric reservoir balls used for pain relief. P T. 2013;38(5):243–5.

    PubMed  PubMed Central  Google Scholar 

  20. Ackermann M, Maier S, Ing H, Bonnabry P. Evaluation of the design and reliability of three elastomeric and one mechanical infusers. J Oncol Pharm Pract. 2007;13(2):77–84. https://doi.org/10.1177/1078155207078349.

    Article  PubMed  Google Scholar 

  21. Ray S, Agrawal B, Dias R, Dave N. Elastomeric pumps: how cautious should we be? Indian J Anaesth. 2018;62(7):558–9. https://doi.org/10.4103/ija.IJA_347_18.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Koogler A, Amusa G, Kushelev M, Lawrence A, Carlson L, Moran K. Elastomeric pump malfunction resulting in over-infusion of local anesthetic. SAGE Open Med Case Rep. 2019;7:2050313X18823928. https://doi.org/10.1177/2050313X18823928.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ganapathy S, Amendola A, Lichfield R, Fowler PJ, Ling E. Elastomeric pumps for ambulatory patient controlled regional analgesia. Can J Anaesth. 2000;47(9):897–902. https://doi.org/10.1007/BF03019672.

    Article  CAS  PubMed  Google Scholar 

  24. •• Son HJ, Kim SH, Ryu JO, Kang MR, Kim MH, Suh JH, et al. Device-related error in patient-controlled analgesia: analysis of 82,698 patients in a tertiary hospital. Anesth Analg. 2019;129(3):720–5. https://doi.org/10.1213/ANE.0000000000003397This very important paper highlights the high level of safety involved with PCA devices in modern practice. However, the exact incidence of device-related errors differ significantly by device type, and the clinician should be aware of the specific risk involved when using a particular pump mechanism.

    Article  CAS  PubMed  Google Scholar 

  25. Smith JE, Rockett M, Siobhan C, Squire R, Hayward C, Ewings P, et al. PAin SoluTions In the Emergency Setting (PASTIES)--patient controlled analgesia versus routine care in emergency department patients with pain from traumatic injuries: randomised trial. BMJ. 2015;350:h2988. https://doi.org/10.1136/bmj.h2988.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Evans E, Turley N, Robinson N, Clancy M. Randomised controlled trial of patient controlled analgesia compared with nurse delivered analgesia in an emergency department. Emerg Med J. 2005;22(1):25–9. https://doi.org/10.1136/emj.2002.004614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rahman NH, DeSilva T. The effectiveness of patient control analgesia in the treatment of acute traumatic pain in the emergency department: a randomized controlled trial. Eur J Emerg Med. 2012;19(4):241–5. https://doi.org/10.1097/MEJ.0b013e32834bfc17.

    Article  PubMed  Google Scholar 

  28. • Rockett M, Creanor S, Squire R, Barton A, Benger J, Cocking L, et al. The impact of emergency department patient-controlled analgesia (PCA) on the incidence of chronic pain following trauma and non-traumatic abdominal pain. Anaesthesia. 2019;74(1):69–73. https://doi.org/10.1111/anae.14476In this important systematic review, the authors provisionally recommend that epidural analgesia and multimodal analgesia be utilized for blunt thoracic trauma. However, the overall quality of the evidence is low in trauma patients.

    Article  CAS  PubMed  Google Scholar 

  29. Galvagno SM Jr, Smith CE, Varon AJ, Hasenboehler EA, Sultan S, Shaefer G, et al. Pain management for blunt thoracic trauma: a joint practice management guideline from the Eastern Association for the Surgery of Trauma and Trauma Anesthesiology Society. J Trauma Acute Care Surg. 2016;81(5):936–51. https://doi.org/10.1097/TA.0000000000001209.

  30. Moon MR, Luchette FA, Gibson SW, Crews J, Sudarshan G, Hurst JM, et al. Prospective, randomized comparison of epidural versus parenteral opioid analgesia in thoracic trauma. Ann Surg. 1999;229(5):684–91; discussion 91-2. https://doi.org/10.1097/00000658-199905000-00011.

  31. Wu CL, Jani ND, Perkins FM, Barquist E. Thoracic epidural analgesia versus intravenous patient-controlled analgesia for the treatment of rib fracture pain after motor vehicle crash. J Trauma. 1999;47(3):564–7. https://doi.org/10.1097/00005373-199909000-00025.

    Article  CAS  PubMed  Google Scholar 

  32. Bulger EM, Edwards T, Klotz P, Jurkovich GJ. Epidural analgesia improves outcome after multiple rib fractures. Surgery. 2004;136(2):426–30. https://doi.org/10.1016/j.surg.2004.05.019.

    Article  PubMed  Google Scholar 

  33. Mohta M, Verma P, Saxena AK, Sethi AK, Tyagi A, Girotra G. Prospective, randomized comparison of continuous thoracic epidural and thoracic paravertebral infusion in patients with unilateral multiple fractured ribs--a pilot study. J Trauma. 2009;66(4):1096–101. https://doi.org/10.1097/TA.0b013e318166d76d.

    Article  PubMed  Google Scholar 

  34. Ootes D, Lambers KT, Ring DC. The epidemiology of upper extremity injuries presenting to the emergency department in the United States. Hand (N Y). 2012;7(1):18–22. https://doi.org/10.1007/s11552-011-9383-z.

    Article  Google Scholar 

  35. Lambers K, Ootes D, Ring D. Incidence of patients with lower extremity injuries presenting to US emergency departments by anatomic region, disease category, and age. Clin Orthop Relat Res. 2012;470(1):284–90. https://doi.org/10.1007/s11999-011-1982-z.

    Article  PubMed  Google Scholar 

  36. Wenzinger E, Rivera-Barrios A, Gonzalez G, Herrera F. Trends in upper extremity injuries presenting to US Emergency Departments. Hand (N Y). 2019;14(3):408–12. https://doi.org/10.1177/1558944717735943.

    Article  Google Scholar 

  37. Ilfeld BM, Enneking FK. A portable mechanical pump providing over four days of patient-controlled analgesia by perineural infusion at home. Reg Anesth Pain Med. 2002;27(1):100–4. https://doi.org/10.1053/rapm.2002.28282.

    Article  PubMed  Google Scholar 

  38. Hunt KJ, Higgins TF, Carlston CV, Swenson JR, McEachern JE, Beals TC. Continuous peripheral nerve blockade as postoperative analgesia for open treatment of calcaneal fractures. J Orthop Trauma. 2010;24(3):148–55. https://doi.org/10.1097/BOT.0b013e3181bfc9f7.

    Article  PubMed  Google Scholar 

  39. Gadsden J, Warlick A. Regional anesthesia for the trauma patient: improving patient outcomes. Local Reg Anesth. 2015;8:45–55. https://doi.org/10.2147/LRA.S55322.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Plunkett AR, Buckenmaier CC 3rd. Safety of multiple, simultaneous continuous peripheral nerve block catheters in a patient receiving therapeutic low-molecular-weight heparin. Pain Med. 2008;9(5):624–7. https://doi.org/10.1111/j.1526-4637.2008.00418.x.

    Article  PubMed  Google Scholar 

  41. Bleckner LL, Bina S, Kwon KH, McKnight G, Dragovich A, Buckenmaier CC 3rd. Serum ropivacaine concentrations and systemic local anesthetic toxicity in trauma patients receiving long-term continuous peripheral nerve block catheters. Anesth Analg. 2010;110(2):630–4. https://doi.org/10.1213/ANE.0b013e3181c76a33.

    Article  CAS  PubMed  Google Scholar 

  42. Gupta RM, Parvizi J, Hanssen AD, Gay PC. Postoperative complications in patients with obstructive sleep apnea syndrome undergoing hip or knee replacement: a case-control study. Mayo Clin Proc. 2001;76(9):897–905. https://doi.org/10.4065/76.9.897.

    Article  CAS  PubMed  Google Scholar 

  43. •• Opperer M, Cozowicz C, Bugada D, Mokhlesi B, Kaw R, Auckley D, et al. Does obstructive sleep apnea influence perioperative outcome? A qualitative systematic review for the society of anesthesia and sleep medicine task force on preoperative preparation of patients with sleep-disordered breathing. Anesth Analg. 2016;122(5):1321–34. https://doi.org/10.1213/ANE.0000000000001178In this very important systematic review by Opperer and colleagues, obstructive sleep apnea was found to be a risk factor for difficult intubation, postoperative respiratory failure, and postoperative cardiovascular events. Significantly, unrecognized obesity hypoventilation syndrome may also be a predictor of postoperative respiratory failure.

    Article  PubMed  Google Scholar 

  44. • Oderda GM, Senagore AJ, Morland K, Iqbal SU, Kugel M, Liu S, et al. Opioid-related respiratory and gastrointestinal adverse events in patients with acute postoperative pain: prevalence, predictors, and burden. J Pain Palliat Care Pharmacother. 2019;33(3–4):82–97. https://doi.org/10.1080/15360288.2019.1668902In this important database analysis, opioid-induced respiratory depression was found to be more likely to occur among surgical patients with obesity, respiratory conditions and sleep apnea.

    Article  PubMed  Google Scholar 

  45. Ayad S, Khanna AK, Iqbal SU, Singla N. Characterisation and monitoring of postoperative respiratory depression: current approaches and future considerations. Br J Anaesth. 2019;123(3):378–91. https://doi.org/10.1016/j.bja.2019.05.044.

    Article  PubMed  Google Scholar 

  46. •• Khanna AK, Bergese SD, Jungquist CR, Morimatsu H, Uezono S, Lee S, et al. Prediction of opioid-induced respiratory depression on inpatient wards using continuous capnography and oximetry: an international prospective, observational trial. Anesth Analg. 2020. https://doi.org/10.1213/ANE.0000000000004788In this very important paper, the authors identify five variables as predictors for opioid-induced respiratory depression. A risk prediction tool, PRODIGY, is then internally validated to predict respiratory depression events, relying on the use of continuous pulse oximetry and capnography.

  47. Semelka M, Wilson J, Floyd R. Diagnosis and treatment of obstructive sleep apnea in adults. Am Fam Physician. 2016;94(5):355–60.

    PubMed  Google Scholar 

  48. Mutter TC, Chateau D, Moffatt M, Ramsey C, Roos LL, Kryger M. A matched cohort study of postoperative outcomes in obstructive sleep apnea: could preoperative diagnosis and treatment prevent complications? Anesthesiology. 2014;121(4):707–18. https://doi.org/10.1097/ALN.0000000000000407.

    Article  PubMed  Google Scholar 

  49. Weingarten TN, Herasevich V, McGlinch MC, Beatty NC, Christensen ED, Hannifan SK, et al. Predictors of delayed postoperative respiratory depression assessed from naloxone administration. Anesth Analg. 2015;121(2):422–9. https://doi.org/10.1213/ANE.0000000000000792.

    Article  PubMed  PubMed Central  Google Scholar 

  50. •• Khanna AK, Sessler DI, Sun Z, Naylor AJ, You J, Hesler BD, et al. Using the STOP-BANG questionnaire to predict hypoxaemia in patients recovering from noncardiac surgery: a prospective cohort analysis. Br J Anaesth. 2016;116(5):632–40. https://doi.org/10.1093/bja/aew029Although obstructive sleep apnea has been identified as a risk factor for postoperative hypoxemia, this very important study found that higher STOP-BANG scores were not predictive of postoperative desaturation events. This finding could suggest that the actual presence of obstructive sleep apnea or other factors such as the use of postoperative opioids may be more important than the STOP-BANG score in assessing the risk for postoperative hypoxemia.

    Article  CAS  PubMed  Google Scholar 

  51. Gupta K, Prasad A, Nagappa M, Wong J, Abrahamyan L, Chung FF. Risk factors for opioid-induced respiratory depression and failure to rescue: a review. Curr Opin Anaesthesiol. 2018;31(1):110–9. https://doi.org/10.1097/ACO.0000000000000541.

    Article  PubMed  Google Scholar 

  52. Khanna AK, Overdyk FJ, Greening C, Di Stefano P, Buhre WF. Respiratory depression in low acuity hospital settings-seeking answers from the PRODIGY trial. J Crit Care. 2018;47:80–7. https://doi.org/10.1016/j.jcrc.2018.06.014.

    Article  PubMed  Google Scholar 

  53. Practice Guidelines for the Prevention, Detection, and Management of Respiratory Depression Associated with Neuraxial Opioid Administration: An Updated Report by the American Society of Anesthesiologists Task Force on Neuraxial Opioids and the American Society of Regional Anesthesia and Pain Medicine. Anesthesiology. 2016;124(3):535–52. doi: https://doi.org/10.1097/ALN.0000000000000975.

  54. Belcher AW, Khanna AK, Leung S, Naylor AJ, Hutcherson MT, Nguyen BM, et al. Long-acting patient-controlled opioids are not associated with more postoperative hypoxemia than short-acting patient-controlled opioids after noncardiac surgery: a cohort analysis. Anesth Analg. 2016;123(6):1471–9. https://doi.org/10.1213/ANE.0000000000001534.

  55. Mehta JH, Cattano D, Brayanov JB, George EE. Assessment of perioperative minute ventilation in obese versus non-obese patients with a non-invasive respiratory volume monitor. BMC Anesthesiol. 2017;17(1):61. https://doi.org/10.1186/s12871-017-0352-0.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kaw R, Bhateja P, Paz YMH, Hernandez AV, Ramaswamy A, Deshpande A, et al. Postoperative complications in patients with unrecognized obesity hypoventilation syndrome undergoing elective noncardiac surgery. Chest. 2016;149(1):84–91. https://doi.org/10.1378/chest.14-3216.

    Article  PubMed  Google Scholar 

  57. Imber DA, Pirrone M, Zhang C, Fisher DF, Kacmarek RM, Berra L. Respiratory management of perioperative obese patients. Respir Care. 2016;61(12):1681–92. https://doi.org/10.4187/respcare.04732.

    Article  PubMed  Google Scholar 

  58. Izrailtyan I, Qiu J, Overdyk FJ, Erslon M, Gan TJ. Risk factors for cardiopulmonary and respiratory arrest in medical and surgical hospital patients on opioid analgesics and sedatives. PLoS One. 2018;13(3):e0194553. https://doi.org/10.1371/journal.pone.0194553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lam T, Nagappa M, Wong J, Singh M, Wong D, Chung F. Continuous pulse oximetry and capnography monitoring for postoperative respiratory depression and adverse events: a systematic review and meta-analysis. Anesth Analg. 2017;125(6):2019–29. https://doi.org/10.1213/ANE.0000000000002557.

    Article  PubMed  Google Scholar 

  60. Sun Z, Sessler DI, Dalton JE, Devereaux PJ, Shahinyan A, Naylor AJ, et al. Postoperative hypoxemia is common and persistent: a prospective blinded observational study. Anesth Analg. 2015;121(3):709–15. https://doi.org/10.1213/ANE.0000000000000836.

  61. Voscopoulos CJ, MacNabb CM, Freeman J, Galvagno SM Jr, Ladd D, George E. Continuous noninvasive respiratory volume monitoring for the identification of patients at risk for opioid-induced respiratory depression and obstructive breathing patterns. J Trauma Acute Care Surg. 2014;77(3 Suppl 2):S208–15. https://doi.org/10.1097/TA.0000000000000400.

    Article  PubMed  Google Scholar 

  62. Voscopoulos C, Theos K, Tillmann Hein HA, George E. A risk stratification algorithm using non-invasive respiratory volume monitoring to improve safety when using post-operative opioids in the PACU. J Clin Monit Comput. 2017;31(2):417–26. https://doi.org/10.1007/s10877-016-9841-9.

    Article  PubMed  Google Scholar 

  63. Weick J, Bawa H, Dirschl DR, Luu HH. Preoperative opioid use is associated with higher readmission and revision rates in total knee and total hip arthroplasty. J Bone Joint Surg Am. 2018;100(14):1171–6. https://doi.org/10.2106/JBJS.17.01414.

    Article  PubMed  Google Scholar 

  64. Cozowicz C, Olson A, Poeran J, Morwald EE, Zubizarreta N, Girardi FP, et al. Opioid prescription levels and postoperative outcomes in orthopedic surgery. Pain. 2017;158(12):2422–30. https://doi.org/10.1097/j.pain.0000000000001047.

    Article  PubMed  Google Scholar 

  65. Chapman CR, Donaldson G, Davis J, Ericson D, Billharz J. Postoperative pain patterns in chronic pain patients: a pilot study. Pain Med. 2009;10(3):481–7. https://doi.org/10.1111/j.1526-4637.2008.00522.x.

    Article  PubMed  Google Scholar 

  66. Jungquist CR, Quinlan-Colwell A, Vallerand A, Carlisle HL, Cooney M, Dempsey SJ, et al. American Society for Pain Management Nursing Guidelines on monitoring for opioid-induced advancing sedation and respiratory depression: revisions. Pain Manag Nurs. 2020;21(1):7–25. https://doi.org/10.1016/j.pmn.2019.06.007.

  67. • Chou R, Gordon DB, de Leon-Casasola OA, Rosenberg JM, Bickler S, Brennan T, et al. Management of postoperative pain: a clinical practice guideline from the american pain society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists' Committee on Regional Anesthesia, Executive Committee, and Administrative Council. J Pain. 2016;17(2):131–57. https://doi.org/10.1016/j.jpain.2015.12.008In regards to postoperative pain, the authors of this important guideline paper recommend the use of a validated pain assessment tool, multimodal analgesia, regional anesthesia, and patient-controlled analgesia whenever possible. Of note, the authors also recommend against the use of routine basal infusions of opioids with intravenous PCA in opioid-naïve adults. Such basal infusions have been associated with increased risk of respiratory depression with no evidence of improved analgesia compared to PCA without a basal infusion.

    Article  PubMed  Google Scholar 

  68. Jouguelet-Lacoste J, La Colla L, Schilling D, Chelly JE. The use of intravenous infusion or single dose of low-dose ketamine for postoperative analgesia: a review of the current literature. Pain Med. 2015;16(2):383–403. https://doi.org/10.1111/pme.12619.

    Article  PubMed  Google Scholar 

  69. Wang L, Johnston B, Kaushal A, Cheng D, Zhu F, Martin J. Ketamine added to morphine or hydromorphone patient-controlled analgesia for acute postoperative pain in adults: a systematic review and meta-analysis of randomized trials. Can J Anaesth. 2016;63(3):311–25. https://doi.org/10.1007/s12630-015-0551-4.

    Article  PubMed  Google Scholar 

  70. Schwenk ES, Viscusi ER, Buvanendran A, Hurley RW, Wasan AD, Narouze S, et al. Consensus guidelines on the use of intravenous ketamine infusions for acute pain management from the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg Anesth Pain Med. 2018;43(5):456–66. https://doi.org/10.1097/AAP.0000000000000806.

  71. Peng C, Li C, Qu J, Wu D. Gabapentin can decrease acute pain and morphine consumption in spinal surgery patients: a meta-analysis of randomized controlled trials. Medicine (Baltimore). 2017;96(15):e6463. https://doi.org/10.1097/MD.0000000000006463.

    Article  CAS  Google Scholar 

  72. Rai AS, Khan JS, Dhaliwal J, Busse JW, Choi S, Devereaux PJ, et al. Preoperative pregabalin or gabapentin for acute and chronic postoperative pain among patients undergoing breast cancer surgery: a systematic review and meta-analysis of randomized controlled trials. J Plast Reconstr Aesthet Surg. 2017;70(10):1317–28. https://doi.org/10.1016/j.bjps.2017.05.054.

  73. Arumugam S, Lau CS, Chamberlain RS. Use of preoperative gabapentin significantly reduces postoperative opioid consumption: a meta-analysis. J Pain Res. 2016;9:631–40. https://doi.org/10.2147/JPR.S112626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Maitra S, Baidya DK, Bhattacharjee S, Som A. Perioperative gabapentin and pregabalin in cardiac surgery: a systematic review and meta-analysis. Rev Bras Anestesiol. 2017;67(3):294–304. https://doi.org/10.1016/j.bjan.2016.07.005.

    Article  PubMed  Google Scholar 

  75. Hamilton TW, Strickland LH, Pandit HG. A meta-analysis on the use of gabapentinoids for the treatment of acute postoperative pain following total knee arthroplasty. J Bone Joint Surg Am. 2016;98(16):1340–50. https://doi.org/10.2106/JBJS.15.01202.

    Article  PubMed  Google Scholar 

  76. • Neal JM, Barrington MJ, Brull R, Hadzic A, Hebl JR, Horlocker TT, et al. The second ASRA practice advisory on neurologic complications associated with regional anesthesia and pain medicine: executive summary 2015. Reg Anesth Pain Med. 2015;40(5):401–30. https://doi.org/10.1097/AAP.0000000000000286In these updated advisories, the influence of pre-existing neuropathies of various types are discussed, as well as the inherent risk of nerve injury from surgery. This paper is also important because it provides guidance to the clinician regarding diagnosis and initial therapy of perioperative nerve injuries.

    Article  CAS  PubMed  Google Scholar 

  77. Cousins MJ, Bridenbaugh PO, Carr DB, Horlocker TT. Cousins and Bridenbaugh's neural blockade in clinical anesthesia and pain medicine. Lippincott Williams & Wilkins; 2009.

  78. Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol. 2012;11(6):521–34. https://doi.org/10.1016/S1474-4422(12)70065-0.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lirk P, Flatz M, Haller I, Hausott B, Blumenthal S, Stevens MF, et al. In Zucker diabetic fatty rats, subclinical diabetic neuropathy increases in vivo lidocaine block duration but not in vitro neurotoxicity. Reg Anesth Pain Med. 2012;37(6):601–6. https://doi.org/10.1097/AAP.0b013e3182664afb.

  80. Lirk P, Verhamme C, Boeckh R, Stevens MF, ten Hoope W, Gerner P, et al. Effects of early and late diabetic neuropathy on sciatic nerve block duration and neurotoxicity in Zucker diabetic fatty rats. Br J Anaesth. 2015;114(2):319–26. https://doi.org/10.1093/bja/aeu270.

  81. Kalichman MW, Calcutt NA. Local anesthetic-induced conduction block and nerve fiber injury in streptozotocin-diabetic rats. Anesthesiology. 1992;77(5):941–7. https://doi.org/10.1097/00000542-199211000-00017.

    Article  CAS  PubMed  Google Scholar 

  82. Kroin JS, Buvanendran A, Williams DK, Wagenaar B, Moric M, Tuman KJ, et al. Local anesthetic sciatic nerve block and nerve fiber damage in diabetic rats. Reg Anesth Pain Med. 2010;35(4):343–50. https://doi.org/10.1097/aap.0b013e3181e82df0.

  83. Baeriswyl M, Taffe P, Kirkham KR, Bathory I, Rancati V, Crevoisier X, et al. Comparison of peripheral nerve blockade characteristics between non-diabetic patients and patients suffering from diabetic neuropathy: a prospective cohort study. Anaesthesia. 2018;73(9):1110–7. https://doi.org/10.1111/anae.14347.

    Article  CAS  PubMed  Google Scholar 

  84. Tang S, Wang J, Tian Y, Li X, Cui Q, Xu M, et al. Sex-dependent prolongation of sciatic nerve blockade in diabetes patients: a prospective cohort study. Reg Anesth Pain Med. 2019;44:860–5. https://doi.org/10.1136/rapm-2019-100609.

  85. Shah A, Hoffman EM, Mauermann ML, Loprinzi CL, Windebank AJ, Klein CJ, et al. Incidence and disease burden of chemotherapy-induced peripheral neuropathy in a population-based cohort. J Neurol Neurosurg Psychiatry. 2018;89(6):636–41. https://doi.org/10.1136/jnnp-2017-317215.

  86. Staff NP, Grisold A, Grisold W, Windebank AJ. Chemotherapy-induced peripheral neuropathy: a current review. Ann Neurol. 2017;81(6):772–81. https://doi.org/10.1002/ana.24951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Abcejo AS, Sviggum HP, Mauermann ML, Hebl JR, Mantilla CB, Hanson AC, et al. Perioperative nerve injury after peripheral nerve block in patients with previous systemic chemotherapy. Reg Anesth Pain Med. 2016;41(6):685–90. https://doi.org/10.1097/AAP.0000000000000492.

  88. Dhir S, Balasubramanian S, Ross D. Ultrasound-guided peripheral regional blockade in patients with Charcot-Marie-Tooth disease: a review of three cases. Can J Anaesth. 2008;55(8):515–20. https://doi.org/10.1007/BF03016671.

    Article  PubMed  Google Scholar 

  89. Bui AH, Marco AP. Peripheral nerve blockade in a patient with Charcot-Marie-Tooth disease. Can J Anaesth. 2008;55(10):718–9. https://doi.org/10.1007/BF03017751.

    Article  PubMed  Google Scholar 

  90. Goedee SH, Brekelmans GJ, van den Berg LH, Visser LH. Distinctive patterns of sonographic nerve enlargement in Charcot-Marie-Tooth type 1A and hereditary neuropathy with pressure palsies. Clin Neurophysiol. 2015;126(7):1413–20. https://doi.org/10.1016/j.clinph.2014.08.026.

    Article  PubMed  Google Scholar 

  91. Barbary JB, Remerand F, Brilhault J, Laffon M, Fusciardi J. Ultrasound-guided nerve blocks in the Charcot-Marie-Tooth disease and Friedreich's ataxia. Br J Anaesth. 2012;108(6):1042–3. https://doi.org/10.1093/bja/aes160.

    Article  CAS  PubMed  Google Scholar 

  92. Koscielniak-Nielsen ZJ. Ultrasound-guided peripheral nerve blocks: what are the benefits? Acta Anaesthesiol Scand. 2008;52(6):727–37. https://doi.org/10.1111/j.1399-6576.2008.01666.x.

    Article  CAS  PubMed  Google Scholar 

  93. • Bergman BD, Hebl JR, Kent J, Horlocker TT. Neurologic complications of 405 consecutive continuous axillary catheters. Anesth Analg. 2003;96(1):247–52. https://doi.org/10.1097/00000539-200301000-00050 table of contents. This important study suggests that, among patients receiving continuous regional anesthesia via a peripheral nerve catheter, the presence of pre-existing neuropathy does not increase the risk of nerve injury.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Ardon.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Patient Safety in Anesthesia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardon, A., Gillespie, N., Kolli, S. et al. Patient-Controlled Analgesia in High-Risk Populations: Implications for Safety. Curr Anesthesiol Rep 10, 463–472 (2020). https://doi.org/10.1007/s40140-020-00406-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-020-00406-5

Keywords

Navigation