Skip to main content
Log in

Damage Control Resuscitation: More Than Just Transfusion Strategies

  • Anesthesia for Trauma (JW Simmons, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Trauma hemorrhage continues to carry a high mortality worldwide. The contemporary damage control resuscitation (DCR) paradigm supports actively bleeding trauma patients until hemorrhage control is achieved. The principles of DCR center on early hemorrhage control and limiting ongoing blood loss by adopting strategies limiting fluid administration, reducing blood pressure targets, and maintaining hemostasis through balanced transfusion strategies. Application of DCR strategies has dramatically reduced mortality from trauma hemorrhage and also seems to reduce the incidence and severity of complications such as organ failure and infection. While much of the discussion around DCR focuses on control of coagulopathy and the delivery of a balanced transfusion, the other principles are at least as important. Avoiding clear fluids solutions, especially at the most critical timepoints, require experience and a coordinated, practiced, multidisciplinary approach. The anesthesiologist therefore has a central role to play in the successful delivery of DCR, and perioperative management of fluid administration and the patient’s cardiovascular status can make all the difference between a good and bad outcome. In this article, we discuss the principles of DCR with a focus on areas of trauma anesthesiology management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rotondo MF, Schwab CW, McGonigal MD, et al. ‘Damage control’: an approach for improved survival in exsanguinating penetrating abdominal injury. J Trauma. 1993;35:375–82 discussion 82-3.

    Article  CAS  PubMed  Google Scholar 

  2. Hodgetts TJ, Mahoney PF, Kirkman E. Damage control resuscitation. J R Army Med Corps. 2007;153:299–300.

    Article  CAS  PubMed  Google Scholar 

  3. Pierce A, Pittet JF. Inflammatory response to trauma: implications for coagulation and resuscitation. Curr Opin Anaesthesiol. 2014;27:246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. •• Peng Z, Pati S, Potter D, et al. Fresh frozen plasma lessens pulmonary endothelial inflammation and hyperpermeability after hemorrhagic shock and is associated with loss of syndecan 1. Shock 2013;40:195–202. Promising results in animal study comparing plasma based resuscitation to crystalloid resuscitation of hemorrhagic shock. FFP inhibits endothelial cell hyperpermeability and inflammation as compared to in an animal model.

  5. • Mutschler M, Nienaber U, Brockamp T, et al. Renaissance of base deficit for the initial assessment of trauma patients: a base deficit-based classification for hypovolemic shock developed on data from 16,305 patients derived from the TraumaRegister DGU(R). Critical Care 2013;17:R42. Retrospective, registry-based study underlining the value of early blood gases for decisionmaking in trauma patients.

  6. •• Spahn DR, Bouillon B, Cerny V, et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Critical Care 2013;17:R76. Comprehensive overview of recommendations and their rationales for interventions in the early management of bleeding trauma patients.

  7. Shapiro MB, Jenkins DH, Schwab CW, Rotondo MF. Damage control: collective review. J Trauma. 2000;49:969–78.

    Article  CAS  PubMed  Google Scholar 

  8. Asensio JA, McDuffie L, Petrone P, et al. Reliable variables in the exsanguinated patient which indicate damage control and predict outcome. Am J Surg. 2001;182:743–51.

    Article  CAS  PubMed  Google Scholar 

  9. Sondeen JL, Coppes VG, Holcomb JB. Blood pressure at which rebleeding occurs after resuscitation in swine with aortic injury. J Trauma. 2003;54:S110–7.

    Article  PubMed  Google Scholar 

  10. Smail N, Wang P, Cioffi WG, Bland KI, Chaudry IH. Resuscitation after uncontrolled venous hemorrhage: does increased resuscitation volume improve regional perfusion? J Trauma. 1998;44:701–8.

    Article  CAS  PubMed  Google Scholar 

  11. Lang F, Busch GL, Ritter M, et al. Functional significance of cell volume regulatory mechanisms. Physiol Rev. 1998;78:247–306.

    Article  CAS  PubMed  Google Scholar 

  12. Powers KA, Zurawska J, Szaszi K, Khadaroo RG, Kapus A, Rotstein OD. Hypertonic resuscitation of hemorrhagic shock prevents alveolar macrophage activation by preventing systemic oxidative stress due to gut ischemia/reperfusion. Surgery. 2005;137:66–74.

    Article  CAS  PubMed  Google Scholar 

  13. Gibson JB, Maxwell RA, Schweitzer JB, Fabian TC, Proctor KG. Resuscitation from severe hemorrhagic shock after traumatic brain injury using saline, shed blood, or a blood substitute. Shock. 2002;17:234–44.

    Article  PubMed  Google Scholar 

  14. Conahan ST, Dupre A, Giaimo ME, Fowler CA, Torres CS, Miller HI. Resuscitation fluid composition and myocardial performance during burn shock. Circ Shock. 1987;23:37–49.

    CAS  PubMed  Google Scholar 

  15. Sorensen B, Fries D. Emerging treatment strategies for trauma-induced coagulopathy. Br J Surg. 2012;99(Suppl 1):40–50.

    Article  PubMed  Google Scholar 

  16. Zarychanski R, Abou-Setta AM, Turgeon AF, et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA. 2013;309:678–88.

    Article  CAS  PubMed  Google Scholar 

  17. Perner A, Haase N, Guttormsen AB, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367:124–34.

    Article  CAS  PubMed  Google Scholar 

  18. Myburgh JA, Finfer S, Bellomo R, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–11.

    Article  CAS  PubMed  Google Scholar 

  19. Guidet B, Martinet O, Boulain T, et al. Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 vs. 0.9 % NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Crit Care. 2012;16:R94.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kowalenko T, Stern S, Dronen S, Wang X. Improved outcome with hypotensive resuscitation of uncontrolled hemorrhagic shock in a swine model. J Trauma. 1992;33:349–53 discussion 61-2.

    Article  CAS  PubMed  Google Scholar 

  21. • Schmidt BM, Rezende-Neto JB, Andrade MV, et al. Permissive hypotension does not reduce regional organ perfusion compared to normotensive resuscitation: animal study with fluorescent microspheres. World J Emerg Surg 2012;7(Suppl 1):S9. Permissive hypotension during resuscitation of hemorrhagic shock was associated with less bleeding and equivalent organ perfusion as compared to normotensive resuscitation.

  22. Taylor AE, Moore TM. Capillary fluid exchange. Am J Physiol. 1999;277:S203–10.

    CAS  PubMed  Google Scholar 

  23. Sperry JL, Minei JP, Frankel HL, et al. Early use of vasopressors after injury: caution before constriction. J Trauma. 2008;64:9–14.

    Article  CAS  PubMed  Google Scholar 

  24. Dubin A, Pozo MO, Casabella CA, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13:R92.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003;54:1127–30.

    Article  PubMed  Google Scholar 

  26. Maegele M, Lefering R, Yucel N, et al. Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury. 2007;38:298–304.

    Article  PubMed  Google Scholar 

  27. Hess JR, Brohi K, Dutton RP, et al. The coagulopathy of trauma: a review of mechanisms. J Trauma. 2008;65:748–54.

    Article  CAS  PubMed  Google Scholar 

  28. Brohi K, Cohen MJ, Ganter MT, et al. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma. 2008;64:1211–7 discussion 7.

    Article  PubMed  Google Scholar 

  29. Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet JF. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg. 2007;245:812–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jansen JO, Scarpelini S, Pinto R, Tien HC, Callum J, Rizoli SB. Hypoperfusion in severely injured trauma patients is associated with reduced coagulation factor activity. J Trauma. 2011;71:S435–40.

    Article  CAS  PubMed  Google Scholar 

  31. Cohen MJ, Call M, Nelson M, et al. Critical role of activated protein C in early coagulopathy and later organ failure, infection and death in trauma patients. Ann Surg. 2012;255:379–85.

    Article  PubMed  Google Scholar 

  32. Davenport R, Brohi K. Fibrinogen depletion in trauma: early, easy to estimate and central to trauma-induced coagulopathy. Crit Care. 2013;17:190.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Frith D, Brohi K. The pathophysiology of trauma-induced coagulopathy. Curr Opin Crit Care. 2012;18:631–6.

    Article  PubMed  Google Scholar 

  34. Nienaber U, Innerhofer P, Westermann I, et al. The impact of fresh frozen plasma vs coagulation factor concentrates on morbidity and mortality in trauma-associated haemorrhage and massive transfusion. Injury. 2011;42:697–701.

    Article  PubMed  Google Scholar 

  35. Schochl H, Nienaber U, Maegele M, et al. Transfusion in trauma: thromboelastometry-guided coagulation factor concentrate-based therapy versus standard fresh frozen plasma-based therapy. Crit Care. 2011;15:R83.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Riskin DJ, Tsai TC, Riskin L, et al. Massive transfusion protocols: the role of aggressive resuscitation versus product ratio in mortality reduction. J Am Coll Surg. 2009;209:198–205.

    Article  PubMed  Google Scholar 

  37. Johansson PI, Sorensen AM, Larsen CF, et al. Low hemorrhage-related mortality in trauma patients in a Level I trauma center employing transfusion packages and early thromboelastography-directed hemostatic resuscitation with plasma and platelets. Transfusion. 2013;53:3088–99.

    Article  CAS  PubMed  Google Scholar 

  38. Rugeri L, Levrat A, David JS, et al. Diagnosis of early coagulation abnormalities in trauma patients by rotation thrombelastography. J Thromb Haemost. 2007;5:289–95.

    Article  CAS  PubMed  Google Scholar 

  39. Davenport R, Manson J, De’Ath H, et al. Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med. 2011;39:2652–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Innerhofer P, Westermann I, Tauber H, et al. The exclusive use of coagulation factor concentrates enables reversal of coagulopathy and decreases transfusion rates in patients with major blunt trauma. Injury. 2013;44:209–16.

    Article  PubMed  Google Scholar 

  41. Haywood-Watson RJ, Holcomb JB, Gonzalez EA, et al. Modulation of syndecan-1 shedding after hemorrhagic shock and resuscitation. PLoS One. 2011;6:e23530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. •• Holcomb JB, Tilley BC, Baraniuk S, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA 2015;313:471–82. First large RCT to compare transfusion ratios in trauma patients. 1:1:1 showed a relative mortality risk reduction of 25 % without however reaching statistical significance.

  43. Carson JL, Carless PA, Hebert PC. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Syst Rev. 2012;4:CD002042.

    Google Scholar 

  44. Peyrou V, Lormeau JC, Herault JP, Gaich C, Pfliegger AM, Herbert JM. Contribution of erythrocytes to thrombin generation in whole blood. Thromb Haemost. 1999;81:400–6.

    Article  CAS  PubMed  Google Scholar 

  45. Kozar RA, Peng Z, Zhang R, et al. Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock. Anesth Analg. 2011;112:1289–95.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008;359:938–49.

    Article  CAS  PubMed  Google Scholar 

  47. Hiippala ST, Myllyla GJ, Vahtera EM. Hemostatic factors and replacement of major blood loss with plasma-poor red cell concentrates. Anesth Analg. 1995;81:360–5.

    CAS  PubMed  Google Scholar 

  48. Rourke C, Curry N, Khan S, et al. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost. 2012;10:1342–51.

    Article  CAS  PubMed  Google Scholar 

  49. Hagemo JS, Stanworth S, Juffermans NP, et al. Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: a multicentre observational study. Crit Care. 2014;18:R52.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kashuk JL, Moore EE, Sawyer M, et al. Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma. Ann Surg. 2010;252:434–42.

    PubMed  Google Scholar 

  51. Raza I, Davenport R, Rourke C, et al. The incidence and magnitude of fibrinolytic activation in trauma patients. J Thromb Haemost. 2013;11:307–14.

    Article  CAS  PubMed  Google Scholar 

  52. Schochl H, Frietsch T, Pavelka M, Jambor C. Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thromboelastometry. J Trauma. 2009;67:125–31.

    Article  PubMed  Google Scholar 

  53. •• Collaborators C-T, Shakur H, Roberts I, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 2010;376:23–32. RCT with over 20,000 patients showing significant mortality reduction from bleeding after early antifibrinolytic therapy without increase in thromboembolic events.

  54. Martini WZ. Coagulopathy by hypothermia and acidosis: mechanisms of thrombin generation and fibrinogen availability. J Trauma. 2009;67:202–8 discussion 8-9.

    Article  CAS  PubMed  Google Scholar 

  55. Meiler SE. Long-term outcome after anesthesia and surgery: remarks on the biology of a newly emerging principle in perioperative care. Anesthesiol Clin. 2006;24:255–78.

    Article  CAS  PubMed  Google Scholar 

  56. Abramson D, Scalea TM, Hitchcock R, Trooskin SZ, Henry SM, Greenspan J. Lactate clearance and survival following injury. J Trauma. 1993;35:584–8 discussion 8-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Heim.

Additional information

This article is part of the Topical Collection on Anesthesia for Trauma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heim, C., Steurer, M.P. & Brohi, K. Damage Control Resuscitation: More Than Just Transfusion Strategies. Curr Anesthesiol Rep 6, 72–78 (2016). https://doi.org/10.1007/s40140-016-0145-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-016-0145-x

Keywords

Navigation