Skip to main content
Log in

Influence of KAR1 on the plant growth and development of dormant seeds by balancing different factors

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Karrikins is a new family of different compounds that can interrupt the seed's dormancy and cause seed germination. Karrikins chemically defined as a family of compounds formed in smoke from the burning of plant material. Previous research indicates that karrikins have essential roles in various biological processes, such as seed dormancy, seed germination, and early plant growth. Recent research indicates that KAR1 can alleviate seed dormancy in rapeseed and Avena fatua by balancing and biosynthesis of gibberellin (GA) and abscisic acid (ABA). This study also summarized the role of KAR1 in affecting ethylene synthesis to resolve seed dormancy by controlling the ACS, ACO, and ethylene receptor genes. Expression levels of ethylene-related genes imply a regulation of the seeds' sensitivity modified to the existence of ethylene and indicate a specific diversification of the particular genes. KAR1 has demonstrated its capacity to regulate the antioxidant activity significantly to break dormancy. KAR1 encouraged the aggregation of 1-aminocyclopropane-1-carboxylic acid (ACC) during ethylene synthesis as a result of increased activity of two ethylene biosynthesis enzymes, ACC synthase (ACS) and ACC oxidase (ACO). Data on the role of KAR1 in alleviating seed dormancy in various plants are hardly available. Only a few articles demonstrated KAR1’s function in alleviating seed dormancy. Researchers have to pay attention on this issue. This analysis can enable researchers to understand KAR1 and how it works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, Jullien M (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219(3):479–488

    CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341

    CAS  Google Scholar 

  • Anzala F, Morere-Le Paven MC, Fournier S, Rondeau D, Limami AM (2006) Physiological and molecular aspects of aspartate-derived amino acid metabolism during germination and post-germination growth in two maize genotypes differing in germination efficiency. J Exp Bot 57(3):645–653

    CAS  Google Scholar 

  • Bahin E, Bailly C, Sotta B, Kranner I, Corbineau F, Leymarie J (2011) Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley. Plant, Cell Environ 34(6):980–993

    CAS  Google Scholar 

  • Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. Elsevier

    Google Scholar 

  • Bethke PC, Libourel IG, Jones RL (2006) Nitric oxide reduces seed dormancy in Arabidopsis. J Exp Bot 57(3):517–526

    CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9(7):1055

    CAS  Google Scholar 

  • Bewley JD, Black M (2013) Seeds: physiology of development and germination, Springer Science and Business Media

  • Bewley JD, Bradford K, Hilhorst H (2012) Seeds: physiology of development, germination and dormancy, Springer Science and Business Media

  • Bogatek R, Sykala A, and Krysiak C (2004) Cyanide-induced ethylene biosynthesis in dormant apple embryos, Acta Physiologiae Plantarum, 26(3 suppl.)

  • Bythell-Douglas R, Rothfels CJ, Stevenson DW, Graham SW, Wong GKS, Nelson DC, Bennett T (2017) Evolution of strigolactone receptors by gradual neo-functionalization of KAI2 paralogues. BMC Biol 15(1):1–21

    Google Scholar 

  • Cembrowska-Lech D, Kępczyński J (2016) Gibberellin-like effects of KAR 1 on dormancy release of Avena fatua caryopses include participation of non-enzymatic antioxidants and cell cycle activation in embryos. Planta 243(2):531–548

    CAS  Google Scholar 

  • Cembrowska-Lech D, Koprowski M, Kępczyński J (2015) Germination induction of dormant Avena fatua caryopses by KAR1 and GA3 involving the control of reactive oxygen species (H2O2 and O2−) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers. J Plant Physiol 176:169–179

    CAS  Google Scholar 

  • Corbineau F, Xia Q, Bailly C, El-Maarouf-Bouteau H (2014) Ethylene, a key factor in the regulation of seed dormancy. Front Plant Sci 5:539

    Google Scholar 

  • Dahleen LS, Tyagi N, Bregitzer P, Brown RH, Morgan WC (2012) Developing tools for investigating the multiple roles of ethylene: identification and mapping genes for ethylene biosynthesis and reception in barley. Mol Genet Genomics 287(10):793–802

    CAS  Google Scholar 

  • Del Carmen Gómez-Jiménez M, García-Olivares E, Matilla AJ (2001) 1-Aminocyclopropane-1-carboxylate oxidase from embryonic axes of germinating chick-pea (Cicer arietinum L.) seeds: cellular immunolocalization and alterations in its expression by indole-3-acetic acid, abscisic acid and spermine. Seed Sci Res 11:243–253

    Google Scholar 

  • De Lange JH, Boucher C (1990) Autecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue. S Afr J Bot 56(6):700–703

    Google Scholar 

  • Drewes FE, Smith MT, Van Staden J (1995) The effect of a plant-derived smoke extract on the germination of light-sensitive lettuce seed. Plant Growth Regul 16(2):205–209

    CAS  Google Scholar 

  • Egerton-Warburton LM (1998) A smoke-induced alteration of the sub-testa cuticle in seeds of the post-fire recruiter, Emmenanthe penduliflora Benth (Hydrophyllaceae). J Exp Bot 49(325):1317–1327

    CAS  Google Scholar 

  • Fath A, Bethke PC, Jones RL (2001) Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberellic acid-induced programmed cell death in barley aleurone. Plant Physiol 126(1):156–166

    CAS  Google Scholar 

  • Feurtado JA, Kermode AR (2018) A merging of paths: abscisic acid and hormonal cross-talk in the control of seed dormancy maintenance and alleviation. Annual plant reviews online, pp. 176–223

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59(1):387–415

    CAS  Google Scholar 

  • Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004) A compound from smoke that promotes seed germination. Science 305(5686):977–977

    CAS  Google Scholar 

  • Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2005) Synthesis of the seed germination stimulant 3-methyl-2H-furo [2, 3-c] pyran-2-one. Tetrahedron Lett 46(34):5719–5721

    CAS  Google Scholar 

  • Flematti GR, Dixon KW, Smith SM (2015) What are karrikins and how were they ‘discovered’by plants? BMC Biol 13(1):1–7

    Google Scholar 

  • Fontaine O, Billard JP, Huault C (1995) Effect of glutathione on dormancy breakage in barley seeds. Plant Growth Regul 16(1):55–58

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155(1):2–18

    CAS  Google Scholar 

  • Gallie DR (2010) Regulated ethylene insensitivity through the inducible expression of the Arabidopsis etr1-1 mutant ethylene receptor in tomato. Plant Physiol 152(4):1928–1939

    CAS  Google Scholar 

  • Gallie DR (2015) Appearance and elaboration of the ethylene receptor family during land plant evolution. Plant Mol Biol 87(4–5):521–539

    CAS  Google Scholar 

  • Gardner MJ, Dalling KJ, Light ME, Jäger AK, Van Staden J (2001) Does smoke substitute for red light in the germination of light-sensitive lettuce seeds by affecting gibberellin metabolism? S Afr J Bot 67(4):636–640

    Google Scholar 

  • Gniazdowska A, Krasuska U, Bogatek R (2010) Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta 232(6):1397–1407

    CAS  Google Scholar 

  • Gommers CM, Visser EJ, St Onge KR, Voesenek LA, Pierik R (2013) Shade tolerance: when growing tall is not an option. Trends Plant Sci 18(2):65–71

    CAS  Google Scholar 

  • Graeber KAI, Nakabayashi K, Miatton E, Leubner-Metzger GERHARD, Soppe WJ (2012) Molecular mechanisms of seed dormancy. Plant, Cell Environ 35(10):1769–1786

    CAS  Google Scholar 

  • Hall BP, Shakeel SN, Schaller GE (2007) Ethylene receptors: ethylene perception and signal transduction. J Plant Growth Regul 26(2):118–130

    CAS  Google Scholar 

  • He T, Pausas JG, Belcher CM, Schwilk DW, Lamont BB (2012) Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol 194(3):751–759

    Google Scholar 

  • Hilhorst HW (2018) Definitions and hypotheses of seed dormancy. Annual Plant Reviews online, pp. 50–71

  • Hou JQ, Kendall EJ, Simpson GM (1997) Water uptake and distribution in non-dormant and dormant wild oat (Avena fatua L.) caryopses. J Exp Bot 48(3):683–692

    CAS  Google Scholar 

  • Kępczyńska E, Piękna-Grochala J, Kępczyński J (2003) Effects of matriconditioning on onion seed germination, seedling emergence and associated physical and metabolic events. Plant Growth Regul 41(3):269–278

    Google Scholar 

  • Kępczyński J (2018) Induction of agricultural weed seed germination by smoke and smoke-derived karrikin (KAR 1), with a particular reference to Avena fatua L. Acta Physiol Plant 40(5):87

    Google Scholar 

  • KeÇpczyński J, KeÇpczyńska E (1997) Ethylene in seed dormancy and germination. Physiol Plant 101(4):720–726

    Google Scholar 

  • Kępczyński J, Van Staden J (2012) Interaction of karrikinolide and ethylene in controlling germination of dormant Avena fatua L. caryopses. Plant Growth Regul 67(2):185–190

    Google Scholar 

  • Kępczyński J, Białecka B, Light ME, Van Staden J (2006) Regulation of Avena fatua seed germination by smoke solutions, gibberellin A 3 and ethylene. Plant Growth Regul 49(1):9–16

    Google Scholar 

  • Kępczyński J, Cembrowska D, Van Staden J (2010) Releasing primary dormancy in Avena fatua L caryopses by smoke-derived butenolide. Plant Growth Regul 62(1):85–91

    Google Scholar 

  • Kępczyński J, Cembrowska-Lech D, Van Staden J (2013) Necessity of gibberellin for stimulatory effect of KAR 1 on germination of dormant Avena fatua L. caryopses. Acta Physiol Plant 35(2):379–387

    Google Scholar 

  • Khatoon A, Rehman SU, Aslam MM, Jamil M, Komatsu S (2020) Plant-derived smoke affects biochemical mechanism on plant growth and seed germination. Int J Mol Sci 21(20):7760

    CAS  Google Scholar 

  • Khosla A, Morffy N, Li Q, Faure L, Chang SH, Yao J, Nelson DC (2020) Structure-function analysis of SMAX1 reveals domains that mediate its karrikin-induced proteolysis and interaction with the receptor KAI2. Plant Cell 32(8):2639–2659

    CAS  Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15(4):281–307

    CAS  Google Scholar 

  • Kulkarni MG, Light ME, Van Staden J (2011) Plant-derived smoke: old technology with possibilities for economic applications in agriculture and horticulture. S Afr J Bot 77(4):972–979

    Google Scholar 

  • Li W, Nguyen KH, Chu HD, Ha CV, Watanabe Y, Osakabe Y, Tran LSP (2017) The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genet 13(11):e1007076

    Google Scholar 

  • Light ME, Daws MI, Van Staden J (2009) Smoke-derived butenolide: towards understanding its biological effects. S Afr J Bot 75(1):1–7

    CAS  Google Scholar 

  • Light ME, Burger BV, Staerk D, Kohout L, Van Staden J (2010) Butenolides from plant-derived smoke: natural plant-growth regulators with antagonistic actions on seed germination. J Nat Prod 73(2):267–269

    CAS  Google Scholar 

  • Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang HQ, He ZH (2013) Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acad Sci 110(38):15485–15490

    CAS  Google Scholar 

  • Locke JM, Bryce JH, Morris PC (2000) Contrasting effects of ethylene perception and biosynthesis inhibitors on germination and seedling growth of barley (Hordeum vulgare L.). J Exp Bot 51(352):1843–1849

    CAS  Google Scholar 

  • Matilla AJ, Matilla-Vázquez MA (2008) Involvement of ethylene in seed physiology. Plant Sci 175(1–2):87–97

    CAS  Google Scholar 

  • Millar AA, Jacobsen JV, Ross JJ, Helliwell CA, Poole AT, Scofield G, Gubler F (2006) Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8’-hydroxylase. Plant J 45(6):942–954

    CAS  Google Scholar 

  • Mindrebo JT, Nartey CM, Seto Y, Burkart MD, Noel JP (2016) Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant kingdom. Curr Opin Struct Biol 41:233–246

    CAS  Google Scholar 

  • Morell S, Follmann H, De Tullio M, Häberlein I (1997) Dehydroascorbate and dehydroascorbate reductase are phantom indicators of oxidative stress in plants. FEBS Lett 414(3):567–570

    CAS  Google Scholar 

  • Morffy N, Faure L, Nelson DC (2016) Smoke and hormone mirrors: action and evolution of karrikin and strigolactone signaling. Trends Genet 32(3):176–188

    CAS  Google Scholar 

  • Nagase R, Katayama M, Mura H, Matsuo N, Tanabe Y (2008) Synthesis of the seed germination stimulant 3-methyl-2H-furo [2, 3-c] pyran-2-ones utilizing direct and regioselective Ti-crossed aldol addition. Tetrahedron Lett 49(29–30):4509–4512

    CAS  Google Scholar 

  • Nelson DC, Riseborough JA, Flematti GR, Stevens J, Ghisalberti EL, Dixon KW, Smith SM (2009) Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiol 149(2):863–873

    CAS  Google Scholar 

  • Nelson DC, Flematti GR, Ghisalberti EL, Dixon KW, Smith SM (2012) Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu Rev Plant Biol 63:107–130

    CAS  Google Scholar 

  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126(3):467–475

    CAS  Google Scholar 

  • Nonogaki H, Bassel GW, Bewley JD (2010) Germination—still a mystery. Plant Sci 179(6):574–581

    CAS  Google Scholar 

  • Oracz K, Karpiński S (2016) Phytohormones signaling pathways and ROS involvement in seed germination. Front Plant Sci 7:864

    Google Scholar 

  • Oracz K, El-Maarouf-Bouteau H, Bogatek R, Corbineau F, Bailly C (2008) Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signalling pathway. J Exp Bot 59(8):2241–2251

    CAS  Google Scholar 

  • Oracz K, El-Maarouf-Bouteau H, Kranner I, Bogatek R, Corbineau F, Bailly C (2009) The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol 150(1):494–505

    CAS  Google Scholar 

  • Peck SC, Kende H (1995) Sequential induction of the ethylene biosynthetic enzymes by indole-3-acetic acid in etiolated peas. Plant Mol Biol 28(2):293–301

    CAS  Google Scholar 

  • Pierik R, Sasidharan R, Voesenek LA (2007) Growth control by ethylene: adjusting phenotypes to the environment. J Plant Growth Regul 26(2):188–200

    CAS  Google Scholar 

  • Potters G, Horemans N, Caubergs RJ, Asard H (2000) Ascorbate and dehydroascorbate influence cell cycle progression in a tobacco cell suspension. Plant Physiol 124(1):17–20

    CAS  Google Scholar 

  • Procko C, Crenshaw CM, Ljung K, Noel JP, Chory J (2014) Cotyledon-generated auxin is required for shade-induced hypocotyl growth in Brassica rapa. Plant Physiol 165(3):1285–1301

    CAS  Google Scholar 

  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533

    CAS  Google Scholar 

  • Roche S, Dixon KW, Pate JS (1997) Seed Ageing and Smoke: Partner Cuesin the Amelioration of Seed Dormancyin Selected Australian Native Species. Aust J Bot 45(5):783–815

    Google Scholar 

  • Ruduś I, Kępczyński J (2018) Reference gene selection for molecular studies of dormancy in wild oat (Avena fatua L.) caryopses by RT-qPCR method. PLoS ONE 13(2):e0192343

    Google Scholar 

  • Ruduś I, Cembrowska-Lech D, Jaworska A, Kępczyński J (2019) Involvement of ethylene biosynthesis and perception during germination of dormant Avena fatua L. caryopses induced by KAR 1 or GA 3. Planta 249(3):719–738

    Google Scholar 

  • Rzewuski G, Sauter M (2008) Ethylene biosynthesis and signaling in rice. Plant Sci 175(1–2):32–42

    CAS  Google Scholar 

  • Sami A, Riaz MW, Zhou X, Zhu Z, Zhou K (2019) Alleviating dormancy in Brassica oleracea seeds using NO and KAR1 with ethylene biosynthetic pathway, ROS and antioxidant enzymes modifications. BMC Plant Biol 19(1):1–15

    Google Scholar 

  • Sami A, Rehman S, Tanvir MA, Zhou XY, Zhu ZH, Zhou K (2020) Assessment of the germination potential of brassica oleracea seeds treated with Karrikin 1 and Cyanide, which modify the ethylene biosynthetic pathway. J Plant Growth Regul 20:1–13

    Google Scholar 

  • Satoh S, Esashi Y (1982) Effects of α-aminoisobutyric acid and D-and L-amino acids on ethylene production and content of 1-aminocyclopropane-1-carboxylic acid in cotyledonary segments of cocklebur seeds. Physiol Plant 54(2):147–152

    CAS  Google Scholar 

  • Scaffidi A, Waters MT, Skelton BW, Bond CS, Sobolev AN, Bythell-Douglas R, Flematti GR (2012) Solar irradiation of the seed germination stimulant karrikinolide produces two novel head-to-head cage dimers. Org Biomol Chem 10(20):4069–4073

    CAS  Google Scholar 

  • Shakeel SN, Wang X, Binder BM, Schaller GE (2013) Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB plants. https://doi.org/10.1093/aobpla/plt010

    Article  Google Scholar 

  • Stevens JC, Merritt DJ, Flematti GR, Ghisalberti EL, Dixon KW (2007) Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2H-furo [2, 3-c] pyran-2-one under laboratory and field conditions. Plant Soil 298(1–2):113–124

    CAS  Google Scholar 

  • Van Staden J, Jager AK, Light ME, Burger BV (2004) Isolation of the major germination cue from plant-derived smoke. South Afr J Bot. https://doi.org/10.1016/S0254-6299(15)30206-4

    Article  Google Scholar 

  • Waters MT, Scaffidi A, Sun YK, Flematti GR, Smith SM (2014) The karrikin response system of A rabidopsis. Plant J 79(4):623–631

    CAS  Google Scholar 

  • Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62(10):3289–3309

    CAS  Google Scholar 

  • Wojtyla Ł, Garnczarska M, Zalewski T, Bednarski W, Ratajczak L, Jurga S (2006) A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds. J Plant Physiol 163(12):1207–1220

    CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35(1):155–189

    CAS  Google Scholar 

  • Yao R, Ming Z, Yan L, Li S, Wang F, Ma S, Xie D (2016) DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 536(7617):469–473

    CAS  Google Scholar 

  • Ye N, Zhu G, Liu Y, Zhang A, Li Y, Liu R, Zhang J (2012) Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. J Exp Bot 63(5):1809–1822

    CAS  Google Scholar 

  • Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K, Sun TP (2007) Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19(10):3037–3057

    CAS  Google Scholar 

Download references

Funding

The research was financially supported by the 13th Five-Year Plan for Rapeseed-Cotton Industry. System of Anhui Province in China (AHCYJSTX-04) and the National Key Research & Development Program (2018YFD0100600).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Writing—Original Draft Preparation, and Methodology ZZH and AS; Formal Analysis, ZXT; Writing—Review & Editing ZMD and XLH; Supervision and Project Administration, ZKJ. All authors have read and approved the manuscript, and ensure that this is the case.

Corresponding author

Correspondence to K. J. Zhou.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interests that might be perceived to influence. The results and discussion reported in this paper.

Additional information

Editorial responsibility: Maryam Shabani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sami, A., Zhu, Z.H., Zhu, T.X. et al. Influence of KAR1 on the plant growth and development of dormant seeds by balancing different factors. Int. J. Environ. Sci. Technol. 19, 3401–3410 (2022). https://doi.org/10.1007/s13762-021-03282-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03282-6

Keywords

Navigation