Skip to main content

Advertisement

Log in

Fluctuating Asymmetry and Wing Size of Argia tinctipennis Selys (Zygoptera: Coenagrionidae) in Relation to Riparian Forest Preservation Status

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Effects of riparian vegetation removal on body size and wing fluctuating asymmetry (FA) of Argia tinctipennis Selys (Odonata: Coenagrionidae) were studied in the River Suiá-Miçú basin, which is part of the Xingu basin in Brazilian Amazonia. A total of 70 specimens (n = 33 from preserved and n = 37 from degraded areas) was measured. Five wing measures of each wing (totalizing ten measured characters) were taken. Preserved and degraded points presented non-overlapped variations of a Habitat Integrity Index, supporting the environmental differentiation between these two categories. FA increases in degraded areas approximately four times for the width between the nodus and proximal portion of the pterostigma of forewings (FW), two times for the width of the wing in the region of nodus of FW, and approximately 1.7 times for the number of postnodal cells of FW. The increase is almost five times for the width between the nodus and the proximal portion of the pterostigma of hind wings (HW), three times for the number of postnodal cells of HW, and approximately 1.6 times the width between quadrangle and nodus of HW. Individuals of preserved sites were nearly 3.3% larger than for degraded sites, based on mean hind wing length. Our results supports that the development of A. tinctipennis in degraded areas is affected by riparian vegetation removal and may reflect in wing FA variations. Consequently, these FA measures may be a useful tool for bioassessment using Odonata insects as a model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2

Similar content being viewed by others

References

  • Beketov MA (2004) Comparative sensitivity to the insecticides deltamethrin and esfenvalerate of some aquatic insect larvae (Ephemeroptera and Odonata) and Daphnia magna. R J Ecol 35:200–204

    Article  CAS  Google Scholar 

  • Benke AC, Wallace JB, Harrison JW, Koebel JW (2001) Food web quantification using secondary production analysis: predaceous invertebrates of the snag habitat in a subtropical river. Fresh Biol 46:329–346

    Article  Google Scholar 

  • Bonada N, Rieradevall M, Prat N, Resh VH (2006) Benthic macroinvertebrate assemblages and macrohabitat connectivity in Mediterranean-climate streams of northern California. J N Am Benthol Soc 25:32–43

    Article  Google Scholar 

  • Carvalho FMV, De Marco P, Ferreira LG (2009) The Cerrado into-pieces: habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biol Conserv 142:1392–1403

    Article  Google Scholar 

  • Casatti L, Ferreira CD, Carvalho FR (2009) Grass-dominated stream sites exhibit low fish species diversity and dominance by guppies: an assessment of two tropical pasture river basins. Hydrobiologia 632:273–283

    Article  Google Scholar 

  • Chang X, Zhai B, Wang M, Wang B (2007a) Relationship between exposure to an insecticide and fluctuating asymmetry in a damselfly (Odonata, Coenagrionidae). Hydrobiologia 586:213–220

    Article  CAS  Google Scholar 

  • Chang XL, Zhai BP, Liu XD, Wang M (2007b) Effects of temperature stress and pesticide exposure on fluctuating asymmetry and mortality of Copera annulata (selys) (Odonata: Zygoptera) larvae. Ecotoxicol Environ Saf 67:120–127

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Zhai B, Wang B, Sun C (2009) Effects of the mixture of avermectin and imidacloprid on mortality and developmental stability of Copera annulata (Odonata: Zygoptera) larvae. B J Linnean Soc 96:44–50

    Article  Google Scholar 

  • Dalzochio MS, Costa JM, Uchoa MA (2011) Diversity of Odonata (Insecta) in lotic systems from Serra da Bodoquena, Mato Grosso do Sul State, Brazil. Rev Bras Entomol 55:88–94

    Article  Google Scholar 

  • De Marco P Jr (1998) The Amazonian Campina dragonfly assemblage: patterns in microhabitat use and behavior in a foraging habitat. Odonatologica 27:239–248

    Google Scholar 

  • De Marco P Jr, Peixoto PEC (2004) Population dynamics of Hetaerina rosea and its relationship to abiotic conditions (Zygoptera: Calopterygidae). Odonatologica 33:73–81

    Google Scholar 

  • De Marco P Jr, Resende DC (2002) Activity patterns and thermoregulation in a tropical dragonfly assemblage. Odonatologica 31:129–138

    Google Scholar 

  • De Marco P Jr, Vianna DM (2005) Distribuição do esforço de coleta de Odonata no Brasil: subsídios para escolha de áreas prioritárias para levantamentos faunísticos. Lundiana 6:13–26

    Google Scholar 

  • Dmitriew C, Rowe L (2005) Resource limitation, predation risk and compensatory growth in a damselfly. Oecologia 142:150–154

    Article  PubMed  Google Scholar 

  • Dmitriew C, Cooray M, Rowe L (2007) Effects of early resource-limiting conditions on patterns of growth, growth efficiency, and immune function at emergence in a damselfly (Odonata: Coenagrionidae). C J Zool 85:310–318

    Article  Google Scholar 

  • Dobrin M, Corkum LD (1999) Can fluctuating asymmetry in adult burrowing mayflies (Hexagenia rigida, Ephemeroptera) be used as a measure of contaminant stress? J G LRes 25:339–346

    Google Scholar 

  • Ferreira-Peruquetti P, De Marco P Jr (2002) Efeito da alteração ambiental sobre comunidades de Odonata em riachos de Mata Atlântica de Minas Gerais, Brasil. R B Zool 19:317–327

    Article  Google Scholar 

  • Forbes M, Leung B, Schalk G (1997) Fluctuating asymmetry in Coenagrion resolutum (Hagen) in relation to age and male pairing success (Zygoptera: Coenagrionidae). Odonatologica 26:9–16

    Google Scholar 

  • Hardersen S (2000) Effects of carbaryl exposure on the last larval instar of Xanthocnemis zealandica—fluctuating asymmetry and adult emergence. Entomol Exp Appl 96:221–230

    Article  CAS  Google Scholar 

  • Hardersen S, Frampton CM (1999) Effects of short term pollution on the level of fluctuating asymmetry a case study using damselflies. Entomol Exp Appl 92:1–7

    Article  CAS  Google Scholar 

  • Hardersen S, Wratten SD, Frampton CM (1999) Does carbaryl increase fluctuating asymmetry in damselflies under field conditions? A mesocosm experiment with Xanthocnemis zealandica (Odonata: Zygoptera). J Ap Ecol 36:534–543

    Article  CAS  Google Scholar 

  • Harvey IF, Walsh KJ (1993) Fluctuating asymmetry and lifetime mating success are correlated in males of the damselfly Coenagrion puella (Odonata, Coenagrionidae). Ecol Entomol 18:198–202

    Article  Google Scholar 

  • Ho GWC, Leung KMY, Lajus DL, Ng JSS, Chan BKK (2009) Fluctuating asymmetry of Amphibalanus (Balanus) amphitrite (Cirripedia: Thoracica) in association with shore height and metal pollution. Hydrobiologia 621:21–32

    Article  CAS  Google Scholar 

  • Hoffmann AA, Woods RE, Collins E, Wallin K, White A, McKenzie JA (2005) Wing shape versus asymmetry as an indicator of changing environmental conditions in insects. A J Entomol 44:233–243

    Article  Google Scholar 

  • Hornung CLR, Pacas C (2006) Investigating damselfly populations at springs in Banff National Park, Canada, with special focus on Argia vivida, Amphiagrion abbreviatum, and Ischnura cervula (Odonata: Coenagrionidae). A Ecol 40:49–58

    CAS  Google Scholar 

  • Jenssen BM, Aarnes JB, Murvoll KM, Herzke D, Nygard T (2010) Fluctuating wing asymmetry and hepatic concentrations of persistent organic pollutants are associated in European shag (Phalacrocorax aristotelis) chicks. Sci Total Environ 408:578–585

    Article  PubMed  CAS  Google Scholar 

  • Kanegae AP, Lomonaco C (2003) Plasticidade morfológica, reprodutiva e assimetria flutuante de Myzus persicae (Sulzer) (Hemiptera: Aphididae) sob diferentes temperaturas. Neotrop Entomol 32:37–43

    Article  Google Scholar 

  • Lencioni FAA (2006) Damselflies of Brazil, an illustrated indentification guide: II—Coenagrionidae families. All Print Ed, p 419

  • Leung B, Forbes MR (1997) Fluctuating asymmetry in relation to indices of quality fitness in the damselfly, Enallagma ebrium (Hagen). Oecologia 110:472–477

    Article  Google Scholar 

  • Maeda EE, Formaggio AR, Shimabukuro YE (2008) Análise Histórica das Transformações da Floresta Amazônica em Áreas Agrícolas na Bacia do Rio Suiá-Miçú. Soc Nat 20:5–24

    Article  Google Scholar 

  • May ML (1991) Dragonfly flight—power requirements at high speed and acceleration. J Exp Biol 158:325–342

    Google Scholar 

  • Møller AP (1997) Developmental stability and fitness: a review. Am Nat 149:916–932

    Article  PubMed  Google Scholar 

  • Nessimian JL, Venticinque E, Zuanon J, de Marco P, Gordo M, Fidelis L, Batista JD, Juen L (2008) Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia 614:117–131

    Article  Google Scholar 

  • Niemi GJ, Mcdonald ME (2004) Application of ecological indicators. Annu Rev Ecol Syst 35:89–111

    Article  Google Scholar 

  • Nobrega CC, De Marco P (2011) Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers Distrib 17:491–505

    Article  Google Scholar 

  • Oertli B (2008) The use of dragonflies in the assessment and monitoring of aquatic habitats. In: Cordoba-Aguilar A (ed) Model organisms for ecological and evolutionary research. Oxford University Press, Oxford, pp 79–95

    Google Scholar 

  • Palmer AR (1994) Fluctuating asymmetry analyses: a primer. In: Markow TA (ed) Developmental instability: its origins and evolutionary implications. Kluwer, New York

    Google Scholar 

  • Palmer AR (1996) Waltzing with asymmetry. BioScience 46:518–532

    Article  Google Scholar 

  • Palmer AR, Strobeck C (1986) Fluctuating asymmetry: measurement, analysis, patterns. Annu Rev Ecol Syst 17:391–421

    Article  Google Scholar 

  • Palmer AR, Strobeck C (1992) Fluctuating asymmetry as a measure of developmental stability: Implications for non-normal distributions and power of statistical tests. Acta Zool Fenn 191:57–72

    Google Scholar 

  • Palmer AR, Strobeck C (1997) Fluctuating asymmetry and developmental stability: heritability of observable variation vs. heritability of inferred cause. J Evol Biol 10:39–49

    Article  Google Scholar 

  • Petersen RC Jr (1992) The RCE: a riparian, channel, and environmental inventory for small streams in agricultural landscape. Freshw Biol 27:295–306

    Article  Google Scholar 

  • Pinto NS (2011) Ocorrência de Orthemis cultriformis (Calvert) (Odonata: Libellulidae) para o Estado de Goiás (Brasil). Entomobrasilis 4:36–37

    Google Scholar 

  • Ratter JA, Askew GP, Montgomery RF, Gifford DR (1978) Observations on vegetation of Northeastern Mato-Grosso.2. Forests and soils of Rio-Suia-Missu area. Proc R Soc Lond B Biol Sci 203:191–208

    Article  PubMed  CAS  Google Scholar 

  • Ratter JA, Ribeiro JF, Bridgewater S (1997) The Brazilian cerrado vegetation and threats to its biodiversity. Ann Botany 80:223–230

    Article  Google Scholar 

  • Rohlf FJ (2006) TPSDIG2: Digitalizying software. http://life.bio.sunysb.edu/morph/soft-dataacq.html

  • Samejima Y, Tsubaki Y (2010) Body temperature and body size affect flight performance in a damselfly. Behav Ecol Sociobiol 64:685–692

    Article  Google Scholar 

  • Sanseverino AM, Nessimian JL (2008) Assimetria flutuante em organismos aquáticos e sua aplicação para avaliação de impactos ambientais. Oecol Brasiliensis 12:382–405

    Google Scholar 

  • Schaffner AK, Anholt BR (1998) Influence of predator presence and prey density on behavior and growth of damselfly larvae (Ischnura elegans) (Odonata: Zygoptera). J Insect Behav 11:793–809

    Article  Google Scholar 

  • Silva DP, De Marco P, Resende DC (2010) Adult odonate abundance and community assemblage measures as indicators of stream ecological integrity: a case study. Ecol Indic 10:744–752

    Article  CAS  Google Scholar 

  • Silva JSO, Bustamante MMC, Markewitz D, Krusche AV, Ferreira LG (2011) Effects of land cover on chemical characteristics of streams in the Cerrado region of Brazil. Biogeochemistry 105:75–88

    Article  CAS  Google Scholar 

  • Taylor PD, Merriam G (1995) Wing morphology of a forest damselfly is related to landscape structure. Oikos 73:43–48

    Article  Google Scholar 

  • Vangestel C, Lens L (2011) Does fluctuating asymmetry constitute a sensitive biomarker of nutritional stress in house sparrows (Passer domesticus)? Ecol Indic 11:389–394

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, New York, p 663

    Google Scholar 

Download references

Acknowledgments

We would like to thank MVC Vital, DP Silva, and FMV Carvalho for suggestions in early versions of this manuscript. CC Côrrea helped on the map preparation and KBA Silva on measurements replication. NS Pinto had a scholarship grant from FUNAPE-UFG (CIEE; 2009–2010) and CNPq (2010–2011), L Juen had graduate scholarship grant from CAPES as part of the graduate program in Ecology and Evolution (UFG). P De Marco work has been supported by continuous CNPq productivity grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo De Marco Jr.

Additional information

Edited by Kleber Del Claro – UFU

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinto, N.S., Juen, L., Cabette, H.S.R. et al. Fluctuating Asymmetry and Wing Size of Argia tinctipennis Selys (Zygoptera: Coenagrionidae) in Relation to Riparian Forest Preservation Status. Neotrop Entomol 41, 178–185 (2012). https://doi.org/10.1007/s13744-012-0029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-012-0029-9

Keywords

Navigation