Skip to main content
Log in

Well-designed sandwich-like structured graphene/emeraldine salts prepared by inverse microemulsion polymerization with particle-on-sheet and sheet-on-sheet morphologies

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In this work, nanocomposites with well-designed sheet-on-sheet and particle-on-sheet structures consisting of emeraldine salt and graphene were prepared via in situ inverse microemulsion of aniline monomers by well-dispersed graphene as efficient template. Influences of the weight percentage of graphene on the morphology and electrical conductivity property of the resulting sandwich-like structures were discussed. All the materials were characterized by XRD, FTIR, DSC, Raman and UV–Vis spectroscopy techniques. The formation of emeraldine salt (ES) shell layer on the exterior of graphene was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The thermal stability, electrical conductivity and electrochemical property of the graphene/emeraldine salt nanocomposites were examined by thermogravimetric analysis (TGA), conventional four-probe method and cyclic voltammetry, respectively. In comparison with the pure emeraldine salt, the graphene/emeraldine salt sandwich-like structures showed enhanced electric conductivity, thermal stability and electrochemical property. A high specific capacitance of 1,615.42 F/g was obtained for graphene/emeraldine salt nanocomposites with sheet-on-sheet morphology at scan rate 5 mV/s which is superior to any studied graphene/emeraldine salt composites, up to now. Improvement in these properties is arisen from the fact that the π-bonded surface of the graphene sheet interacts strongly with the conjugated structure of the emeraldine salt sheet and increases relative amounts of quinoid rings to benzoid rings in sandwich-like structure of graphene/emeraldine salt nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cao J, Sun JZ, Hong H, Li HY, Chen HZ, Wang M (2004) Carbon nanotube/CdS core-shell nanowires prepared by a simple room-temperature chemical reduction method. Adv Mater 16:84–87

    Article  CAS  Google Scholar 

  2. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876–1902

    Article  CAS  Google Scholar 

  3. Zhou X, Wu T, Hu B, Yang G, Han B (2010) Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid. Chem Commun 46:3663–3665

    Article  CAS  Google Scholar 

  4. Huang YF, Lin CW (2012) Polyaniline-intercalated graphene oxide sheet and its transition to a nanotube through a self-curling process. Polymer 53:1079–1085

    Article  CAS  Google Scholar 

  5. Pei QX, Sha ZD, Zhang YW (2011) A theoretical analysis of the thermal conductivity of hydrogenated graphene. Carbon 49:4752–4759

    Article  CAS  Google Scholar 

  6. Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970

    Article  CAS  Google Scholar 

  7. Bunch JS, Van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead H, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315:490–493

    Article  CAS  Google Scholar 

  8. Stankovich S, Dikin DA, Dommett G, Kohlhaas K, Zimney E, Stach E, Piner R, Nguyen S, Ruoff R (2006) Graphene-based composite materials. Nature 442:282–285

    Article  CAS  Google Scholar 

  9. Yao J, Shen X, Wang B, Liu H, Wang G (2009) In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem Commun 11:1849–1852

    Article  CAS  Google Scholar 

  10. Ashraf R, Kausar A, Siddiq M (2014) High-performance polymer/nanodiamond composites: synthesis and properties. Iran Polym J 23:531–545

    Article  CAS  Google Scholar 

  11. Deng L, Wang J, Liang J, Zhu G, Kang L, Hao Z, Lei Z, Yang Z, Liu Z (2014) RuO2/graphene hybrid material for high performance electrochemical capacitor. J Power Sources 248:407–415

    Article  CAS  Google Scholar 

  12. Xu Y, Wang Y, Liang J, Huang Y, Ma Y, Wan X, Chen Y (2009) A hybrid material of graphene and poly (3,4-ethyldioxythiophene) (PEDOT) optical transparency with high conductivity, flexibility, and transparency. Nano Res 2:343–348

    Article  CAS  Google Scholar 

  13. Wang HL, Hao QL, Yang XJ, Lu LD, Wang X (2010) A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2:2164–2170

    Article  CAS  Google Scholar 

  14. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    Article  CAS  Google Scholar 

  15. Wang YG, Li HQ, Xia YY (2006) Ordered whisker like polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619–2623

    Article  CAS  Google Scholar 

  16. Luo YC, Do JS (2004) Urea biosensor based on PANi(urease)-Nafion/Au composite electrode. Biosens Bioelectron 20:15–23

    Article  CAS  Google Scholar 

  17. Liu S, Liu X, Li Z, Yang S, Wang J (2011) Fabrication of free-standing graphene/polyaniline nanofibers composite paper via electrostatic adsorption for electrochemical supercapacitors. New J Chem 35:369–374

    Article  CAS  Google Scholar 

  18. Murugan AV, Muraliganth T, Manthiram A (2009) Rapid, facile microwave-solvothermal snthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chem Mater 21:5004–5006

    Article  CAS  Google Scholar 

  19. Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofibers composites as supercapacitor electrodes. Chem Mater 22:1392–1401

    Article  CAS  Google Scholar 

  20. Du F, Wang J, Tang C (2013) Enhanced electrochemical capacitance of polyaniline/graphene hybrid nanosheets with graphene as templates. Compos B 53:376–381

    Article  CAS  Google Scholar 

  21. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  22. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:126–1130

    Article  Google Scholar 

  23. Sarker AK, Hong JD (2012) Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors. Langmuir 28:12637–12646

    Article  CAS  Google Scholar 

  24. Lin Y, Rao AM, Sadanadan B, Kenik EA, Sun YP (2002) Functionalizing multiple walled carbon nanotubes with aminopolymers. J Phys Chem B 106:1294–1298

    Article  CAS  Google Scholar 

  25. Feng W, Bai XD, Lian YQ, Liang J, Wang XG, Yoshino K (2003) Well-aligned polyaniline/carbon nanotube composite films grown by in situ aniline polymerization. Carbon 41:1551–1557

    Article  CAS  Google Scholar 

  26. Singh K, Ohlan A, Pham VH, Balasubramaniyan R, Varshney S, Jang J, Hur SH, Choi WM, Kumar M, Dhawan SK, Kongd B, Chung JS (2013) Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5:2411–2420

    Article  CAS  Google Scholar 

  27. Stankovich S, Dikin D, Dommett G, Kohlhaas K, Zimney E, Stach E (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  28. QuilSmrd S, Louarn G, Lefrant S, MacDiarmid AG (1994) Vibrational analysis of polyaniline: a comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Phys Rev B 50:12496–12508

    Article  Google Scholar 

  29. Ginic-Markovic MG, Matisons J, Cervini R, Simon GP, Fredericks PM (2006) Synthesis of new polyaniline/nanotube composites using ultrasonically initiated emulsion polymerization. Chem Mater 18:6258–6265

    Article  CAS  Google Scholar 

  30. Reddy K, Sin B, Ryu K, Noh J, Lee Y (2009) In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: synthesis, morphology, structure and electrical conductivity. Synth Met 159:1934–1939

    Article  CAS  Google Scholar 

  31. Singla ML, Sajeela A, Srivastava A, Jain DVS (2007) Effect of doping of organic and inorganic acids on polyaniline/Mn3O4 composite for NTC and conductivity behaviour. Sens Actuators A 136:604–612

    Article  CAS  Google Scholar 

  32. Raidongia K, Nag A, Hembram KPSS, Waghmare UV, Datta R, Rao CNR (2010) BCN: a graphene analogue with remarkable adsorptive properties. Chem Eur J 16:149–157

    Article  CAS  Google Scholar 

  33. Moon I, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun. doi:10.1038/ncomms1067

    Google Scholar 

  34. Lee D, Char K (2002) Thermal degradation behavior of multi-walled carbon nanotubes/polyamide 6 composites. Polym Degrad Stabil 75:555–560

    Article  CAS  Google Scholar 

  35. Yue J, Epstein AJ, Zhong Z, Gallagher PK, MacDiarmid AG (1991) Thermal stabilities of polyaniline. Synth Met 41:765–768

    Article  CAS  Google Scholar 

  36. Long YZ, Yin ZH, Chen ZJ (2008) Low-temperature magnetoresistance studies on composite films of conducting polymer and multiwalled carbon nanotubes. J Phys Chem C 112:11507–11512

    Article  CAS  Google Scholar 

  37. Basavaraja C, Noh GT, Huh DS (2013) Chemically modified polyaniline nanocomposites by poly(2-acrylamido-2-methyl-1-propanesulfonicacid)/graphene nanoplatelet. Colloid Polym Sci 291:2755–2763

    Article  CAS  Google Scholar 

  38. Bai H, Xu Y, Zhao L, Li C, Shi G (2009) Non-covalent functionalization of graphene sheets by sulfonated Polyaniline. Chem Commun 13:1667–1669

    Article  Google Scholar 

  39. Wei L, Tang DM, He YB, You CH, Shi ZQ, Chen XC, Chen CM, Hou PX, Liu C, Yang QH (2009) Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 3:3730–3736

    Article  Google Scholar 

  40. Zhang LL, Li S, Zhang JT, Guo P, Zheng J, Zhao XS (2010) Enhancement of electrochemical performance of macroporous carbon by surface coating of polyaniline. Chem Mater 22:1195–1202

    Article  CAS  Google Scholar 

  41. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer, New York

    Book  Google Scholar 

  42. Yan J, Wei T, Shao B, Fan ZJ, Qian WZ, Zhang ML, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48:487–493

    Article  CAS  Google Scholar 

  43. Yu P, Li Y, Zhao X, Wu L, Zhang Q (2014) Graphene-wrapped polyaniline nanowire arrays on nitrogen-doped carbon fabric as novel flexible hybrid electrode materials for high-performance supercapacitor. Langmuir 30:5306–5313

    Article  CAS  Google Scholar 

  44. Feng XM, Li RM, Ma YW, Chen RF, Shi NE, Fan QL, Huang W (2011) One step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv Funct Mat 21:2989–2996

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to the Research Council of the University of Tehran. The authors gratefully acknowledged the kind assistance of Ms. A. Fotouhi at Polymer and Thermal Analysis Laboratory of the University College of Science, University of Tehran for TGA and DSC analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Khoee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachoei, Z., Khoee, S. & Sharifi Sanjani, N. Well-designed sandwich-like structured graphene/emeraldine salts prepared by inverse microemulsion polymerization with particle-on-sheet and sheet-on-sheet morphologies. Iran Polym J 24, 203–217 (2015). https://doi.org/10.1007/s13726-015-0313-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0313-8

Keywords

Navigation