Skip to main content
Log in

Effect of Shortening Carbon Nanotubes on Carbon Nanotube Dispersion, Damage and Mechanical Behavior of Carbon Nanotube-Metal Matrix Nanocomposites

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Carbon nanotube dispersion in metallic matrices has been a challenge for many years. This paper investigates for the first time whether shortened carbon nanotubes as a starting material could promote improved carbon nanotube dispersion and promote less carbon nanotube damage when dispersed in metals. Aluminum-carbon nanotube nanocomposites were prepared using two carbon nanotube lengths (644nm and 10–30 μm). The nanocomposites prepared with shortened carbon nanotubes showed less carbon nanotube damage, higher microhardness, smaller matrix grain size, and improved dispersion of the carbon nanotubes as compared to the nanocomposites prepared with longer carbon nanotubes. Results suggest major implications for the use of even shorter carbon nanotubes for metal matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.R. Bakshi, D. Lahiri, A. Agarwal, S.R. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites: A review. Int. Mater. Rev. 55, 41–64 (2010)

    Article  CAS  Google Scholar 

  2. J. Wang, X. Deng, S. Du, F. Cheng, F. Li, L. Lu, H. Zhang, J. Wang, X. Deng, S. Du, F. Cheng, F. Li, L. Lu, H. Zhang, Carbon nanotube reinforced ceramic composites: A review. InterCeram Int. Ceram. Rev. 63, 286–289 (2014)

    Article  Google Scholar 

  3. M. Moniruzzaman, K.I. Winey, M. Moniruzzaman, K.I. Winey, Polymer nanocomposites containing carbon nanotubes. Macromolecules. 39, 5194–5205 (2006)

    Article  CAS  Google Scholar 

  4. X. Gong, J. Liu, S. Baskaran, R.D. Voise, J.S. Young, X. Gong, J. Liu, S. Baskaran, R.D. Voise, J.S. Young, Surfactant-assisted processing of carbon nanotube/polymer composites. Chem. Mater. 12, 1049–1052 (2000)

    Article  CAS  Google Scholar 

  5. R. Khan, M.R. Azhar, A. Anis, M.A. Alam, M. Boumaza, S.M. Al-Zahrani, R. Khan, M.R. Azhar, A. Anis, M.A. Alam, M. Boumaza, S.M. Al-Zahrani, Facile synthesis of epoxy nanocomposite coatings using inorganic nanoparticles for enhanced thermo-mechanical properties: a comparative study. J. Coatings Technol. Res. 13, 159–169 (2016)

    Article  CAS  Google Scholar 

  6. M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, J.E. Fischer, M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, J.E. Fischer, Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80, 2767–2769 (2002)

    Article  CAS  Google Scholar 

  7. Chai, Y., Zhang, K., Zhang, M., Chan, P. C. H., Yuen, M. M. F.: Carbon nanotube/copper composites for via filling and thermal management. Proc.-Electron. Components Technol. Conf. 1224–1229 (2007)

  8. M. Islam, M.R. Azhar, N. Fredj, T.D. Burleigh, M. Islam, M.R. Azhar, N. Fredj, T.D. Burleigh, Electrochemical impedance spectroscopy and indentation studies of pure and composite electroless Ni-P coatings. Surf. Coatings Technol. 236, 262–268 (2013)

    Article  CAS  Google Scholar 

  9. C. Subramaniam, T. Yamada, K. Kobashi, A. Sekiguchi, D.N. Futaba, M. Yumura, K. Hata, C. Subramaniam, T. Yamada, K. Kobashi, A. Sekiguchi, D.N. Futaba, M. Yumura, K. Hata, One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite. Nat. Commun. 4, 2202 (2013)

    Article  Google Scholar 

  10. A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos. Sci. Technol. 70, 2237–2241 (2010)

    Article  CAS  Google Scholar 

  11. K.S. Munir, C. Wen, K.S. Munir, C. Wen, Deterioration of the strong sp2carbon network in carbon nanotubes during the mechanical dispersion processing—a review. Crit. Rev. Solid State Mater. Sci. 41, 347–366 (2016)

    Article  CAS  Google Scholar 

  12. T.W. Chou, L. Gao, E.T. Thostenson, Z. Zhang, J.H. Byun, T.W. Chou, L. Gao, E.T. Thostenson, Z. Zhang, J.H. Byun, An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos. Sci. Technol. 70, 1–19 (2010)

    Article  CAS  Google Scholar 

  13. A.M.K. Esawi, M.M. Farag, A.M.K. Esawi, M.M. Farag, Carbon nanotube reinforced composites: Potential and current challenges. Mater. Des. 28, 2394–2401 (2007)

    Article  CAS  Google Scholar 

  14. S.R. Bakshi, A. Agarwal, S.R. Bakshi, A. Agarwal, An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon N. Y. 49, 533–544 (2011)

    Article  CAS  Google Scholar 

  15. I.V. Anoshkin, O.S. Bazykina, E.V. Rakova, E.G. Rakov, I.V. Anoshkin, O.S. Bazykina, E.V. Rakova, E.G. Rakov, Aqueous dispersions of thin multiwalled carbon nanotubes. Russ. J. Phys. Chem. A. 82, 254–257 (2008)

    CAS  Google Scholar 

  16. A. Esawi, K. Morsi, A. Esawi, K. Morsi, Dispersion of carbon nanotubes (CNTs) in aluminum powder. Compos. Part A Appl. Sci. Manuf. 38, 646–650 (2007)

    Article  Google Scholar 

  17. S. Simões, F. Viana, M.A.L. Reis, M.F. Vieira, S. Simões, F. Viana, M.A.L. Reis, M.F. Vieira, Aluminum and nickel matrix composites reinforced by CNTs: Dispersion/mixture by ultrasonication. Metals (Basel). 7(7), 279 (2017)

    Article  Google Scholar 

  18. J. Stein, B. Lenczowski, N. Fréty, E. Anglaret, J. Stein, B. Lenczowski, N. Fréty, E. Anglaret, Mechanical reinforcement of a high-performance aluminium alloy AA5083 with homogeneously dispersed multi-walled carbon nanotubes. Carbon N. Y. 50, 2264–2272 (2012)

    Article  CAS  Google Scholar 

  19. X. Yang, T. Zou, C. Shi, E. Liu, C. He, N. Zhao, X. Yang, T. Zou, C. Shi, E. Liu, C. He, N. Zhao, Effect of carbon nanotube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites. Mater. Sci. Eng. A. 660, 11–18 (2016)

    Article  CAS  Google Scholar 

  20. K. Morsi, A.M.K. Esawi, P. Borah, S. Lanka, A. Sayed, M. Taher, K. Morsi, A.M.K. Esawi, P. Borah, S. Lanka, A. Sayed, M. Taher, Properties of single and dual matrix aluminum-carbon nanotube composites processed via spark plasma extrusion (SPE). Mater. Sci. Eng. A. 527, 5686–5690 (2010)

    Article  Google Scholar 

  21. B. Chen, S. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi, K. Kondoh, B. Chen, S. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi, K. Kondoh, An approach for homogeneous carbon nanotube dispersion in Al matrix composites. Mater. Des. 72, 1–8 (2015)

    Article  CAS  Google Scholar 

  22. A. Maqbool, M.A. Hussain, F.A. Khalid, N. Bakhsh, A. Hussain, M.H. Kim, A. Maqbool, M.A. Hussain, F.A. Khalid, N. Bakhsh, A. Hussain, M.H. Kim, Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites. Mater. Charact. 86, 39–48 (2013)

    Article  CAS  Google Scholar 

  23. X.L. Shi, H. Yang, G.Q. Shao, X.L. Duan, L. Yan, Z. Xiong, P. Sun, X.L. Shi, H. Yang, G.Q. Shao, X.L. Duan, L. Yan, Z. Xiong, P. Sun, Fabrication and properties of W-Cu alloy reinforced by multi-walled carbon nanotubes. Mater. Sci. Eng. A. 457, 18–23 (2007)

    Article  Google Scholar 

  24. S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo, S.H. Hong, S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo, S.H. Hong, Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv. Mater. 17, 1377–1381 (2005)

    Article  CAS  Google Scholar 

  25. A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Compos. Part A Appl. Sci. Manuf. 42, 234–243 (2011)

    Article  Google Scholar 

  26. F. Inam, T. Vo, J.P. Jones, X. Lee, F. Inam, T. Vo, J.P. Jones, X. Lee, Effect of carbon nanotube lengths on the mechanical properties of epoxy resin: An experimental study. J. Compos. Mater. 47, 2321–2330 (2013)

    Article  Google Scholar 

  27. J.B. Bai, A. Allaoui, J.B. Bai, A. Allaoui, Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites: Experimental investigation. Compos. Part A Appl. Sci. Manuf. 34, 689–694 (2003)

    Article  Google Scholar 

  28. B. Chen, J. Shen, X. Ye, L. Jia, S. Li, J. Umeda, M. Takahashi, K. Kondoh, B. Chen, J. Shen, X. Ye, L. Jia, S. Li, J. Umeda, M. Takahashi, K. Kondoh, Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites. Acta Mater. 140, 317–325 (2017)

    Article  CAS  Google Scholar 

  29. V. Bundy, M. Chauhan, C. Fitch, P. Modi, K. Morsi, V. Bundy, M. Chauhan, C. Fitch, P. Modi, K. Morsi, Effect of carbon nanotube (CNT) length on the mechanical milling of Ni-CNT powders and Ni-CNT/Al reactive synthesis. Metall Mater. Trans. A Phys. Metall. Mater. Sci. 49, 6351–6358 (2018)

    Article  CAS  Google Scholar 

  30. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH image to imagej: 25 years of image analysis. Nat. Methods. 9, 671–675 (2012)

    Article  CAS  Google Scholar 

  31. B.H. Toby, R.B. Von Dreele, B.H. Toby, R.B. Von Dreele, GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013)

    Article  CAS  Google Scholar 

  32. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005)

    Article  Google Scholar 

  33. R. Pérez Bustamante, J. Bonilla Martinez, J. González Cantu, M. Miki Yoshida, R. Martínez Sánchez, R. Pérez Bustamante, J. Bonilla Martinez, J. González Cantu, M. Miki Yoshida, R. Martínez Sánchez, Al4C3 formation in carbon nanotube/aluminum composites. Microsc. Microanal. 18, 1914–1915 (2012)

    Article  Google Scholar 

  34. R.A. DiLeo, B.J. Landi, R.P. Raffaelle, R.A. DiLeo, B.J. Landi, R.P. Raffaelle, Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy. J. Appl. Phys. 101, 1–6 (2007)

    Article  Google Scholar 

  35. K.L. Lu, R.M. Lago, Y.K. Chen, M.L.H. Green, P.J.F. Harris, S.C. Tsang, K.L. Lu, R.M. Lago, Y.K. Chen, M.L.H. Green, P.J.F. Harris, S.C. Tsang, Mechanical damage of carbon nanotubes by ultrasound. Carbon N. Y. 34, 814–816 (1996)

    Article  CAS  Google Scholar 

  36. G. Pagani, M.J. Green, P. Poulin, M. Pasquali, G. Pagani, M.J. Green, P. Poulin, M. Pasquali, Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication. Proc. Natl. Acad. Sci. U. S. A. 109, 11599–11604 (2012)

    Article  CAS  Google Scholar 

  37. S. Suárez, E. Ramos-Moore, B. Lechthaler, F. Mücklich, S. Suárez, E. Ramos-Moore, B. Lechthaler, F. Mücklich, Grain growth analysis of multiwalled carbon nanotube-reinforced bulk Ni composites. Carbon N. Y. 70, 173–178 (2014)

    Article  Google Scholar 

  38. Z.N. Farhat, Y. Ding, D.O. Northwood, A.T. Alpas, Z.N. Farhat, Y. Ding, D.O. Northwood, A.T. Alpas, Effect of grain size on friction and wear of nanocrystalline aluminum. Mater. Sci. Eng. A. 206, 302–313 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. David Pullman and Nobuyuki Yamamoto for allowing the use of their Raman Microscope. The authors would also like to thank Dr. George Youssef and Kaitlin Kehl for valuable discussion during this work. This work was supported by the National Science Foundation grant number 1560850.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Morsi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitch, C., Morsi, K. Effect of Shortening Carbon Nanotubes on Carbon Nanotube Dispersion, Damage and Mechanical Behavior of Carbon Nanotube-Metal Matrix Nanocomposites. Metallogr. Microstruct. Anal. 10, 167–173 (2021). https://doi.org/10.1007/s13632-021-00725-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-021-00725-x

Keywords

Navigation