Skip to main content
Log in

Smart technologies toward sleep monitoring at home

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

With progress in sensors and communication technologies, the range of sleep monitoring is extending from professional clinics into our usual home environments. Information from conventional overnight polysomnographic recordings can be derived from much simpler devices and methods. The gold standard of sleep monitoring is laboratory polysomnography, which classifies brain states based mainly on EEGs. Single-channel EEGs have been used for sleep stage scoring with accuracies of 84.9%. Actigraphy can estimate sleep efficiency with an accuracy of 86.0%. Sleep scoring based on respiratory dynamics provides accuracies of 89.2% and 70.9% for identifying sleep stages and sleep efficiency, respectively, and a correlation coefficient of 0.94 for apnea–hypopnea detection. Modulation of autonomic balance during the sleep stages are well recognized and widely used for simpler sleep scoring and sleep parameter estimation. This modulation can be recorded by several types of cardiovascular measurements, including ECG, PPG, BCG, and PAT, and the results showed accuracies up to 96.5% and 92.5% for sleep efficiency and OSA severity detection, respectively. Instead of using recordings for the entire night, less than 5 min ECG recordings have used for sleep efficiency and AHI estimation and resulted in high correlations of 0.94 and 0.99, respectively. These methods are based on their own models that relate sleep dynamics with a limited number of biological signals. Parameters representing sleep quality and disturbed breathing are estimated with high accuracies that are close to the results obtained by polysomnography. These unconstrained technologies, making sleep monitoring easier and simpler, will enhance qualities of life by expanding the range of ubiquitous healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yaggi HK, Araujo AB, McKinlay JB. Sleep duration as a risk factor for the development of Type 2 diabetes. Diabetes Care. 2006;29(3):657–61.

    Article  Google Scholar 

  2. Gangwisch JE, Heymsfield SB, Boden-Albala B, Buijs RM, Kreier F, Pickering TG, Rundle AG, Zammit GK, Malaspina D. Short sleep duration as a risk factor for hypertension. Hypertension. 2006;47(5):833–9.

    Article  Google Scholar 

  3. Perlman CA, Johnson SL, Mellman TA. The prospective impact of sleep duration on depression and mania. Bipolar Disord. 2006;8(3):271–4.

    Article  Google Scholar 

  4. Cappuccio FP, Taggart FM, Kandala NB, Currie A, Peile E, Stranges S, Miller MA. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008;31(5):619–26.

    Article  Google Scholar 

  5. Deak M, Epstein LJ. The history of polysomnography. Sleep Med Clin. 2009;4(3):313–21.

    Article  Google Scholar 

  6. Berry RB, Albertario CL, Harding SM, Lloyd RM, Plante DT, Quan SF, Troester MM, Vaughn BV. The AASM manual for the scoring of sleep and associated events. In: American Academy of Sleep Medicine. 2018; version 2.5.

  7. Van de Water ATM, Holmes A, Hurley DA. Objective measurements of sleep for non-laboratory settings as alternatives to polysomnography-a systematic review. J Sleep Res. 2011;20(1):183–200.

    Article  Google Scholar 

  8. Collop NA, Anderson WM, Boehlecke B, Claman D, Goldberg R, Gottlieb DJ, Hudgel D, Sateia M, Schwab R. Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients portable monitoring. J Clin Sleep Med. 2007;3(7):737–52.

    Google Scholar 

  9. Mykytyn IJ, Sajkov D, Neil AM, McEvoy RD. Portable computerized polysomnography in attended and unattended settings. Chest. 1999;15(1):114–22.

    Article  Google Scholar 

  10. Bruyneel M, Sanida C, Art G, Libert W, Cuveler L, Paesmans M, Sergysels R, Ninane V. Sleep efficiency during sleep studies: results of a prospective study comparing home-based and in-hospital polysomnography. J Sleep Res. 2011;20(1):201–6.

    Article  Google Scholar 

  11. Berthomier C, Drouot X, Herman-Stoïca M, Berthomier P, Prado J, Bokar-Thire D, Benoit O, Mattout J, d’Ortho MP. Automatic analysis of single-channel sleep EEG: validation in healthy individuals. Sleep. 2007;30(11):1587–95.

    Article  Google Scholar 

  12. Liang SF, Kuo CE, Hu YH, Pan YH. Automatic stage scoring of single channel sleep EEG by using multiscale entropy and autoregressive models. IEEE T Instrum Meas. 2012;61(6):1649–57.

    Article  Google Scholar 

  13. Shambroom JR, Fabregas SE, Johnstone J. Validation of an automated wireless system to monitor sleep in healthy adults. J Sleep Res. 2012;21(2):221–30.

    Article  Google Scholar 

  14. Stochholm A, Mikkelsen K, Kidmose P. Automatic sleep stage classification using ear EEG. In: Conference proceedings of the IEEE EMBC. 2016. https://doi.org/10.1109/embc.2016.7591789.

  15. Association American Sleep Disorder. Practice parameters for the use of actigraphy in the clinical assessment of sleep disorders. Sleep. 1995;18(4):285–7.

    Article  Google Scholar 

  16. Sadeh A, Acebo C. The role of actigraphy in sleep medicine. Sleep Med. 2002;6(2):113–24.

    Article  Google Scholar 

  17. Morgenthaler T, Alessi C, Friedman L, Owens J, Kapur V, Boehlecke B, Brown T, Chesson A Jr, Coleman J, Lee-Chiong T, Pancer J, Swick TJ, Standards of Practice Committee, American Academy of Sleep Medicine. Practice parameters for the use of actigraphy in the assessment of sleep and sleep disorders: an update for 2007. Sleep. 2007;30(4):519–29.

    Article  Google Scholar 

  18. Sadeh A. The role and validity of actigraphy in sleep medicine: an update. Sleep Med. 2011;15:259–67.

    Article  Google Scholar 

  19. Marino M, Rueschman MN, Winkelman JW, Ellenbogen JM, Solet JM, Dulin H, Berkman LF, Buxton OM. Measuring sleep: accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep. 2013;36(11):1747–55.

    Article  Google Scholar 

  20. Kelly JM, Strecker RE, Bianchi MT. Recent developments in home sleep-monitoring devices. ISRN Neurol. 2012. https://doi.org/10.5402/2012/768794.

  21. Fino E, Mazzetti M. Monitoring healthy and disturbed sleep through smartphone applications: a review of experimental evidence. Sleep Breath. 2018. https://doi.org/10.1007/s1132501816613.

  22. Yang CC, Hsu YL. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors. 2010;10:7772–88. https://doi.org/10.3390/s100807772.

    Article  Google Scholar 

  23. Ko PR, Kientz JA, Choe EK, Kay M, Landis CA, Watson NF. Consumer sleep technologies: a review of the landscape. J Clin Sleep Med. 2015;11(12):1455–61.

    Article  Google Scholar 

  24. Mantua J, Gravel N, Spencer RMC. Reliability of sleep measures from four personal health monitoring devices compared to research-based actigraphy and polysomnography. Sensors. 2016;16:646. https://doi.org/10.3390/s16050646.

    Article  Google Scholar 

  25. Choi BH, Seo JW, Choi JM, Shin HB, Lee JY, Jeong DU, Park KS. Non-constraining sleep/wake monitoring system using bed actigraphy. Med Biol Eng Comp. 2007;45(1):107–14.

    Article  Google Scholar 

  26. Hwang SW, Lee YJ, Jeong DU, Park KS. Unconstrained sleep stage estimation based on respiratory dynamics and body movement. Methods Info Med. 2016;55(06):545–55.

    Article  Google Scholar 

  27. De Chazal P, O’Hare E, Fox N, Heneghan C. Assessment of sleep/wake patterns using a non-contact biomotion sensor. In: Conference proceedings of the IEEE engineering in medicine and biology society. 2008. p. 514–7.

  28. Liao WH, Yang CM. Video-based activity and movement pattern analysis in overnight sleep studies. In: Conference proceedings of the IEEE pattern recognition. 2008. https://doi.org/10.1109/icpr.2008.4761635.

  29. Nakatani M, Okada S, Shimizu S, Mohri I, Ohno Y, Taniike M, Makikawa M. Body movement analysis during sleep for children with ADHD using video image processing. In: Conference proceedings of the IEEE engineering in medicine and biology society. 2013. p. 6389–92.

  30. Punjabi NM. The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008;5(2):136–43.

    Article  Google Scholar 

  31. Malik V, Smith D, Lee-Chiong T Jr. Respiratory physiology during sleep. Sleep Med Clin. 2012;5(2):497–505.

    Article  Google Scholar 

  32. Douglas NJ, White DP, Pickett CK, Weil JV, Zwillich CW. Respiration during sleep in normal man. Thorax. 1982;37(11):840–4.

    Article  Google Scholar 

  33. Ward KL, McArdle N, James A, Bremner AP, Simpson L, Cooper MN, Palmer LJ, Fedson AC, Mukherjee S, Hillman DR. A comprehensive evaluation of a two-channel portable monitor to “rule in” obstructive sleep apnea. J Clin Sleep Med. 2015;11(4):433–44.

    Google Scholar 

  34. Chung GS, Choi BH, Lee JS, Lee JS, Jeong DU, Park KS. REM sleep estimation only using respiratory dynamics. Physiol Meas. 2009;30(12):1327–40.

    Article  Google Scholar 

  35. Samy L, Huang MC, Liu JJ, Xu W, Sarrafzadeh M. Unobtrusive sleep stage identification using a pressure-sensitive bed sheet. IEEE Sens J. 2014;14(7):2091–101.

    Article  Google Scholar 

  36. Hwang SH, Lee HJ, Yoon HN, Jung DW, Lee JG, Lee YJ, Jeong DU, Park KS. Unconstrained sleep apnea monitoring using polyvinylidene fluoride film-based sensor. IEEE Trans Biomed Eng. 2014;61(7):2125–34.

    Article  Google Scholar 

  37. Shinara Z, Akselroda S, Daganb Y, Baharava A. Autonomic changes during wake–sleep transition: a heart rate variability based approach. Auton Neurosci. 2006;130(1):17–27.

    Article  Google Scholar 

  38. Somers VK, Dyken ME, Mark AL, Abboud FM. Sympathetic-nerve activity during sleep in normal subjects. N Engl J Med. 1993;328:303–7.

    Article  Google Scholar 

  39. Baharav A, Kotagal S, Gibbons V, Rubin BK, Pratt G, Karin J, Akselrod S. Fluctuations in autonomic nervous activity during sleep displayed by power spectrum analysis of heart rate variability. Neurology. 1995;45(6):1183–7.

    Article  Google Scholar 

  40. Voronin IM, Biryukova EV. Heart rate variability in healthy humans during night sleep. Hum Physiol. 2006;32(3):258–63.

    Article  Google Scholar 

  41. Verrier RL, Harper RM, Hobson JA. Cardiovascular physiology: central and autonomic regulation. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. Philadelphia: Saunders; 2000. p. 179–91.

    Google Scholar 

  42. Stein PK, Pu Y. Heart rate variability, sleep and sleep disorders. Sleep Med Rev. 2012;16(1):47–66.

    Article  Google Scholar 

  43. Fell J, Mann K, RoÈschke J, Gopinathan MS. Nonlinear analysis of continuous ECG during sleep II. Dynamical measures. Biol Cybern. 2000;82(6):485–91.

    Article  Google Scholar 

  44. Yoon HN, Choi SH, Kwon HB, Kim SK, Hwang SH, Oh SM, Choi JW, Lee YJ, Jeong DU, Park KS. Sleep-dependent directional coupling of cardiorespiratory system in patients with obstructive sleep apnea. In: IEEE transactions on biomedical engineering. 2018. https://doi.org/10.1109/tbme.2018.2819719.

  45. Yoon HN, Hwang SH, Choi SH, Choi JW, Lee YJ, Jeong DU, Park KS. Wakefulness evaluation during sleep for healthy subjects and OSA patients using a patch-type device. Comput Methods Prog Biomed. 2018;155:127–38.

    Article  Google Scholar 

  46. Jung DW, Lee YJ, Jeong DU, Park KS. New predictors of sleep efficiency. Chronobiol Int. 2017;34(1):93–104.

    Article  Google Scholar 

  47. Yoon HN, Hwang SH, Choi JW, Lee YJ, Jeong DU, Park KS. Slow-wave sleep estimation for healthy subjects and OSA patients using R–R intervals. IEEE J Biomed Health Inform. 2018;22(1):119–28.

    Article  Google Scholar 

  48. Yoon HN, Hwang SH, Choi JW, Lee YJ, Jeong DU, Park KS. REM sleep estimation based on autonomic dynamics using R–R intervals. Physiol Meas. 2017;38(4):631–51.

    Article  Google Scholar 

  49. Yılmaz B, Asyalı MH, Arıkan E, Yetkin S, Özgen F. Sleep stage and obstructive apneaic epoch classification using single-lead ECG. BioMed Eng Online. 2010;9:39.

    Article  Google Scholar 

  50. Khandoker AH, Palaniswami M, Karmakar CK. Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings. IEEE Trans Info Technol Biomed. 2009;13(1):37–48.

    Article  Google Scholar 

  51. Bsoul M, Minn H, Tamil L. Apnea MedAssist: real-time sleep apnea monitor using single-lead ECG. IEEE Trans Info Technol Biomed. 2011;15(3):416–27.

    Article  Google Scholar 

  52. Jung DW, Hwang SH, Lee YJ, Jeong DU, Park KS. Apnea–hypopnea index prediction using electrocardiogram acquired during sleep-onset period. IEEE Trans Biomed Eng. 2017;64(2):295–301.

    Article  Google Scholar 

  53. Jung DW, Lee YJ, Jeong DU, Park KS. Apnea–hypopnea index prediction through an assessment of autonomic influence on heart rate in wakefulness. Physiol Behav. 2017;169:9–15.

    Article  Google Scholar 

  54. Lim YG, Kim KK, Park KS. ECG recording on a bed during sleep without direct skin-contact. IEEE Trans Biomed Eng. 2007;54(4):718–25.

    Article  Google Scholar 

  55. Fonseca P, Weysen T, Goelema MS, Møst EIS, Radha M, Scheurleer CL, van den Heuvel L, Aarts RM. Validation of photoplethysmography-based sleep staging compared with polysomnography in healthy middle-aged adults. Sleep. 2017;40(7):zsx097. https://doi.org/10.1093/sleep/zsx097.

    Article  Google Scholar 

  56. Gil E, Mendez M, Vergara JM, Cerutti S, Bianchi AM, Laguna P. Discrimination of sleep-apnea–related decreases in the amplitude fluctuations of PPG signal in children by HRV analysis. IEEE Trans Biomed Eng. 2009;56(4):1005–14.

    Article  Google Scholar 

  57. Romem A, Romem A, Koldobskiy D, Scharf SM. Diagnosis of obstructive sleep apnea using pulse oximeter derived photoplethysmographic signals. J Clin Sleep Med. 2014;10(3):285–90.

    Google Scholar 

  58. Inan OT, Migeotte PF, Park KS, Etemadi M, Tavakolian K, Casanella R, Zanetti J, Tank J, Funtova I, Prisk GK, Rienzo MD. Ballistocardiography and seismocardiography: a review of recent advances. IEEE J Biomed Health Inform. 2015;19(4):1414–27.

    Article  Google Scholar 

  59. Choi BH, Chung GS, Lee JS, Jeong DU, Park KS. Slow-wave sleep estimation on a load-cell-installed bed: a non-constrained method. Physiol Meas. 2009;30(11):1163–70.

    Article  Google Scholar 

  60. Jung DW, Hwang SH, Chung GS, Lee YJ, Jeong DU, Park KS. Estimation of sleep onset latency based on the blood pressure regulatory reflex mechanism. IEEE J Biomed Health Inform. 2013;17(3):539–44.

    Article  Google Scholar 

  61. Jung DW, Hwang SH, Yoon HN, Lee YJG, Jeong DU, Park KS. Nocturnal awakening and sleep efficiency estimation using unobtrusively measured ballistocardiogram. IEEE Trans Biomed Eng. 2014;61(1):131–8.

    Article  Google Scholar 

  62. Fonseca P, Long X, Radha M, Haakma R, Aarts RM, Rolink J. Sleep stage classification with ECG and respiratory effort. Physiol Meas. 2015;36(10):2027–40.

    Article  Google Scholar 

  63. Willemen T, Van Deun D, Verhaert V, Vandekerckhove M, Exadaktylos V, Verbraecken J, Van Huffel S, Haex B, Sloten JV. An evaluation of cardiorespiratory and movement features with respect to sleep-stage classification. IEEE J Biomed Health Inform. 2014;18(2):661–9.

    Article  Google Scholar 

  64. Herscovici S, Pe’er A, Papyan S, Lavie P. Detecting REM sleep from the finger: an automatic REM sleep algorithm based on peripheral arterial tone (PAT) and actigraphy. Physiol Meas. 2007;28(2):129–40.

    Article  Google Scholar 

  65. Bresler M, Sheffy K, Pillar G, Preiszler M, Herscovici S. Differentiating between light and deep sleep stages using an ambulatory device based on peripheral arterial tonometry. Physiol Meas. 2008;29(5):571–84.

    Article  Google Scholar 

  66. Hedner J, White DP, Malhotra A, Herscovici S, Pittman SD, Zou D, Grote L, Pillar G. Sleep staging based on autonomic signals: a multi-center validation study. J Clin Sleep Med. 2011;7(3):301–6.

    Google Scholar 

  67. Schnall RP, Shlitner A, Sheffy J, Kedar R, Lavie P. Periodic, profound peripheral vasoconstriction—a new marker of obstructive sleep apnea. Sleep. 1999;22:939–46.

    Google Scholar 

  68. Penzel T, Kesper K, Pinnow I, Becker HF, Vogelmeier C. Physiol Meas. 2004;25(4):1025–36.

    Article  Google Scholar 

  69. Yalamanchali S, Farajian V, Hamilton C, Pott TR, Samuelson CG, Friedman M. Diagnosis of obstructive sleep apnea by peripheral arterial tonometry meta-analysis. JAMA Otolaryngol Head Neck Surg. 2013;39(12):1343–50.

    Article  Google Scholar 

  70. Hwang SH, Chung GS, Lee JS, Shin JH, Lee SJ, Jeong DU, Park KS. Sleep-wake estimation using only anterior tibialis electromyography data. Biomed Eng Online. 2012;11:26.

    Article  Google Scholar 

  71. Hwang SH, Seo SW, Yoon HN, Jung DW, Baek HJ, Cho JG, Choi JW, Lee YJ, Jeong DU, Park KS. Sleep period time estimation based on electrodermal activity. IEEE J Biomed Health Inform. 2017;21(1):115–22.

    Article  Google Scholar 

  72. Danker-Hopfe H, Anderer P, Zeitlhofer J, Boeck M, Dorn H, Gruger G, Heller E, Loretz E, Moser D, Parapatics S, Saletu B, Schmit A, Dorffner G. Interrater reliability for sleep scoring according to Rechtschaffen & Kales and the new AASM standard. J Sleep Res. 2009;18(1):78–84.

    Article  Google Scholar 

  73. Nonoue S, Mashita M, Haraki S, Mikami A, Adachi H, Yatani H, Yoshida A, Taniike M, Kato T. Inter-scorer reliability of sleep assessment using EEG and EOG recording system in comparison to polysomnography. Sleep Biol Rhythms. 2017;15(1):39–48.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2017R1A5A1015596) and Samsung Electronics (800-20180337) Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Suk Park.

Ethics declarations

Conflict of interest

All authors declare to have no conflict of interests.

Ethical approval

All procedures performed in studies involving human participants were approved by the Institutional Review Board of Seoul National University Hospital, Korea.

Informed consent

Informed consent was obtained from all individual participants included.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, K.S., Choi, S.H. Smart technologies toward sleep monitoring at home. Biomed. Eng. Lett. 9, 73–85 (2019). https://doi.org/10.1007/s13534-018-0091-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-018-0091-2

Keywords

Navigation