Skip to main content
Log in

The protective effect of laver extract against the UVA- and UVB-induced damage in HaCaT cells

  • Research Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

We investigated the protective effect of aqueous-methanol extract of laver (Porphyra yezoensis) against UV-induced damage in HaCaT cells. The laver extract exhibited strong UV absorbance at 300–360 nm. The cells irradiated with UVA or UVB in the presence of the extract exhibited higher viability than those irradiated without the extract. The protective effect was more prominent against UVA probably due to stronger absorption and screening of the UVA. The laver extract also exerted cell-protective effect in the postirradiation period. The extract increased steady-state glutathione content of HaCaT cells. The cells irradiated with UVA in the presence of the laver extract exhibited less severe depletion of glutathione than those irradiated without the extract. The extract also stimulated recovery from UVA-induced glutathione depletion in the post-irradiation period, which supports a critical role of oxidative stress in the UVA-induced cell damage and also a role of the laver extract in the antioxidative defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cho, J. W. et al. Curcumin inhibits the expression of COX-2 in UVB-irradiated human keratinocytes (HaCaT) by inhibiting activation of AP-1: p38 MAP kinase and JNK as potential upstream targets. Exp. Mol. Med. 37, 186–192 (2005).

    PubMed  CAS  Google Scholar 

  2. Rundhaug, J. E. & Fischer, S. M. Cyclo-oxygenase-2 plays a critical role in UV-induced skin carcinogenesis. Photochem. Photobiol. 84, 322–329 (2008).

    Article  PubMed  CAS  Google Scholar 

  3. Yaar, M. & Gilchrest, B. A. Photoageing: mechanism, prevention and therapy. Br. J. Dermatol. 157, 874–887 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. Armstrong, B. K. & Kricker, A. The epidemiology of UV induced skin cancer. J. Photochem. Photobiol. B. 63, 8–18 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. Diffey, B. L. Ultraviolet radiation and human health. Clin. Dermatol. 16, 83–89 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. Besaratinia, A. et al. DNA lesions induced by UV A1 and B radiation in human cells: comparative analyses in the overall genome and in the p53 tumor suppressor gene. Proc. Natl. Acad. Sci. USA 102, 10058–10063 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. Pfeifer, G. P., You, Y. H. & Besaratinia, A. Mutations induced by ultraviolet light. Mutat. Res. 571, 19–31 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. Setlow, R. B. & Carrier, W. L. Pyrimidine dimers in ultraviolet-irradiated DNA’s. J. Mol. Biol. 17, 237–254 (1966).

    Article  PubMed  CAS  Google Scholar 

  9. Ehrhart, J. C., Gosselet, F. P., Culerrier, R. M. & Sarasin, A. UVB-induced mutations in human key gatekeeper genes governing signalling pathways and consequences for skin tumourigenesis. Photochem. Photobiol. Sci. 2, 825–834 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. Shorrocks, J., Paul, N. D. & McMillan, T. J. The dose rate of UVA treatment influences the cellular response of HaCaT keratinocytes. J. Invest. Dermatol. 128, 685–693 (2008).

    PubMed  CAS  Google Scholar 

  11. Assefa, Z., Van Laethem, A., Garmyn, M. & Agostinis, P. Ultraviolet radiation-induced apoptosis in keratinocytes: on the role of cytosolic factors. Biochim. Biophys. Acta 1755, 90–106 (2005).

    PubMed  CAS  Google Scholar 

  12. Bickers, D. R. & Athar, M. Oxidative stress in the pathogenesis of skin disease. J. Invest. Dermatol. 126, 2565–2575 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. Stern, R. S., Weinstein, M. C. & Baker, S. G. Risk reduction for nonmelanoma skin cancer with childhood sunscreen use. Arch. Dermatol. 122, 537–545 (1986).

    Article  PubMed  CAS  Google Scholar 

  14. Thompson, S. C., Jolley, D. & Marks, R. Reduction of solar keratoses by regular sunscreen use. N. Engl. J. Med. 329, 1147–1151 (1993).

    Article  PubMed  CAS  Google Scholar 

  15. Kulms, D. & Schwarz, T. Molecular mechanisms of UV-induced apoptosis. Photodermatol. Photoimmunol. Photomed. 16, 195–201 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. Moan, J., Porojnicu, A. C. & Dahlback, A. Ultraviolet radiation and malignant melanoma. Adv. Exp. Med. Biol. 624, 104–116 (2008).

    Article  PubMed  Google Scholar 

  17. Zhang, L., Li, L. & Wu, Q. Protective effects of mycosporine-like amino acids of Synechocystis sp. PCC 6803 and their partial characterization. J. Photochem. Photobiol. B. 86, 240–245 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. Sinha, R. P., Klisch, M., Gröniger, A. & Häder, D.-P. Ultraviolet-absorbing/screening substances in cyanobacteris, phytoplankton and macroalgae. J. Photochem. Photobiol. B. 47, 83–94 (1998).

    Article  CAS  Google Scholar 

  19. Conde, F. R., Churio, M. S. & Previtali, C. M. The photoprotector mechanism of mycosporine-like amino acids. Excited-state properties and photostability of porphyra-334 in aqueous solution. J. Photochem. Photobiol. B. 56, 139–144 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. Whitehead, K. & Hedges, J. I. Photodegradation and photosensitization of mycosporine-like amino acids. J. Photochem. Photobiol. B. 80, 115–121 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. Helbling, E. W., Menchi, C. F. & Villafane, V. E. Bioaccumulation and role of UV-absorbing compounds in two marine crustacean species from Patagonia, Argentina. Photochem. Photobiol. Sci. 1, 820–825 (2002).

    Article  PubMed  Google Scholar 

  22. Yuan, Y. V. & Walsh, N. A. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem. Toxicol. 44, 1144–1150 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. de la Coba, F, Aguilera, J., Figueroa, F. L., de Gálvez, M. V. & Herrera, E. Antioxidant activity of mycosporine-like amino acids isolated from three red macroalgae and one marine lichen. J. Appl. Phycol. 21, 161–169 (2009).

    Article  Google Scholar 

  24. Groniger, A., Sinha, R. P., Klisch, M. & Hader, D. P. Photoprotective compounds in cyanobacteria, phytoplankton and macroalgae-a database. J. Photochem. Photobiol. B. 58, 115–122 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. Yildiza, G., Vatana, Ö., Çeliklera, S. & Derea,. Determination of the phenolic compounds and antioxidative capacity in red algae Gracilaria bursa-pastoris. Int. J. Food Prop. 14, 496–502 (2011).

    Article  Google Scholar 

  26. Cornich, M. L. & Garbary, D. J. Antioxidants from macroalgae: potential applications in human health and nutrition. Algae 25, 155–171 (2010).

    Article  Google Scholar 

  27. Klisch, M. & Hader, D. P. Wavelength dependence of mycosporine-like amino acid synthesis in Gyrodinium dorsum. J. Photochem. Photobiol. B. 66, 60–66 (2002).

    Article  PubMed  CAS  Google Scholar 

  28. Torres, A., Enk, C. D., Hochberg, M. & Srebnik, M. Porphyra-334, a potential natural source for UVA protective sunscreens. Photochem. Photobiol. Sci. 5, 432–435 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. Reed, D. J. et al. High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. Anal. Biochem. 106, 55–62 (1980).

    Article  PubMed  CAS  Google Scholar 

  30. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Mi Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, SJ., Han, T. & Choi, EM. The protective effect of laver extract against the UVA- and UVB-induced damage in HaCaT cells. Toxicol. Environ. Health Sci. 4, 186–193 (2012). https://doi.org/10.1007/s13530-012-0134-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-012-0134-5

Keywords

Navigation