Skip to main content
Log in

Photoresponse and Field Effect Transport Studies in InAsP–InP Core–Shell Nanowires

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

A ternary InAsyP1−y alloy is suitable for an application to near-infrared (NIR) optical devices as their direct bandgap energy covers the entire NIR band. A nanowire (NW) system allows an epitaxial integration of InAsyP1−y alloy on any type of substrate since the lattice mismatch strain can be relieved through the NW sidewall. Nevertheless, the very large surface to volume ratio feature of the NWs leads to enormous surface states which are susceptible to surface recombination of free carriers. Here, ternary InAs0.75P0.25 NWs are grown with InP passivation layer (i.e., core–shell structure) to minimize the influence of the surface states, thus increasing their optical and electrical properties. A photoresponse study was achieved through the modeled band structure of the grown NWs. The model and experimental results suggest that 5-nm-thick InP shell efficiently passivates the surface states of the InAs0.75P0.25 NWs. The fabricated core–shell photodetectors and field-effect transistors exhibit improved photoresponse and transport properties compared to its counterpart core-only structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allen, J.E., Hemesath, E.R., Perea, D.E., Lensch-Falk, J.L., Li, Z., Yin, F., Gass, M.H., Wang, P., Bleloch, A.L., Palmer, R.E., Lauhon, L.J.: High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 3, 168–173 (2008)

    Article  Google Scholar 

  2. Breuer, S., Pfüller, C., Flissikowski, T., Brandt, O., Grahn, H.T., Geelhaar, L., Riechert, H.: Suitability of Au-and self-assisted GaAs nanowires for optoelectronic applications. Nano Lett. 11, 1276–1279 (2011)

    Article  Google Scholar 

  3. Chang, C.-C., Chi, C.-Y., Yao, M., Huang, N., Chen, C.-C., Theiss, J., Bushmaker, A.W., LaLumondiere, S., Yeh, T.-W., Povinelli, M.L.: Electrical and optical characterization of surface passivation in GaAs nanowires. Nano Lett. 12, 4484–4489 (2012)

    Article  Google Scholar 

  4. Choi, C.H., Kim, H., Hwang, J., Cho, M., Shin, J.C.: Electrical properties of InAs/InP core–shell nanowires. J. Nanosci. Nanotechnol. 16, 11535–11537 (2016)

    Article  Google Scholar 

  5. Cornet, C., Schliwa, A., Even, J., Doré, F., Celebi, C., Létoublon, A., Macé, E., Paranthoen, C., Simon, A., Koenraad, P.: Electronic and optical properties of InAs/InP quantum dots on InP (100) and InP (311) B substrates: theory and experiment. Phys. Rev. B 74, 035312 (2006)

    Article  Google Scholar 

  6. Dai, X., Zhang, S., Wang, Z., Adamo, G., Liu, H., Huang, Y., Couteau, C., Soci, C.: GaAs/AlGaAs nanowire photodetector (2016). arXiv preprint arXiv:1601.02312

  7. Demarina, N., Grützmacher, D.: Influence of surface states on electronic band structure and electron density in InAs nanowires and InAs shell nanowires. ECS Trans. 64, 95–99 (2014)

    Article  Google Scholar 

  8. Holloway, G.W., Song, Y., Haapamaki, C.M., LaPierre, R.R., Baugh, J.: Electron transport in InAs–InAlAs core–shell nanowires. Appl. Phys. Lett. 102, 043115 (2013)

    Article  Google Scholar 

  9. Jiang, X., Xiong, Q., Nam, S., Qian, F., Li, Y., Lieber, C.M.: InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 7, 3214–3218 (2007)

    Article  Google Scholar 

  10. Kasanaboina, P.K., Ojha, S.K., Sami, S.U., Reynolds, L., Liu, Y., Iyer, S.: Tailoring of GaAs/GaAsSb Core–Shell Structured Nanowires for IR Photodetector Applications, pp. 937307–937309. International Society for Optics and Photonics, Bellingham (2015)

    Google Scholar 

  11. Kavanagh, K.L., Saveliev, I., Blumin, M., Swadener, G., Ruda, H.E.: Faster radial strain relaxation in InAs–GaAs core–shell heterowires. J. Appl. Phys. 111, 044301 (2012)

    Article  Google Scholar 

  12. Kawaguchi, K., Sudo, H., Matsuda, M., Takemoto, K., Yamamoto, T., Arakawa, Y.: Radial InP/InAsP/InP heterostructure nanowires on patterned Si substrates using self-catalyzed growth for vertical-type optical devices. Appl. Phys. Lett. 106, 0120107 (2015)

    Article  Google Scholar 

  13. Li, H.-Y., Wunnicke, O., Borgström, M., Immink, W., Van Weert, M., Verheijen, M., Bakkers, E.: Remote p-doping of InAs nanowires. Nano Lett. 7, 1144–1148 (2007)

    Article  Google Scholar 

  14. Lin, A., Shapiro, J.N., Scofield, A.C., Liang, B., Huffaker, D.L.: Enhanced InAs nanopillar electrical transport by in situ passivation. Appl. Phys. Lett. 102, 053115 (2013)

    Article  Google Scholar 

  15. Manual A Us: Device Simulation Software. Silvaco Int, Santa Clara (2008)

    Google Scholar 

  16. Popovitz-Biro, R., Kretinin, A., Von Huth, P., Shtrikman, H.: InAs/GaAs core–shell nanowires. Cryst. Growth Des. 11, 3858–3865 (2011)

    Article  Google Scholar 

  17. Rieger, T., Luysberg, M., Schäpers, T., Grützmacher, D., Lepsa, M.I.: Molecular beam epitaxy growth of GaAs/InAs core–shell nanowires and fabrication of InAs nanotubes. Nano Lett. 12, 5559–5564 (2012)

    Article  Google Scholar 

  18. Shin, J.C., Lee, A., Katal Mohseni, P., Kim, D.Y., Yu, L., Kim, J.H., Kim, H.J., Choi, W.J., Wasserman, D., Choi, K.J., Li, X.: Wafer-scale production of uniform InAsyP1−y nanowire array on silicon for heterogeneous integration. ACS Nano 7, 5463–5471 (2013)

    Article  Google Scholar 

  19. Shin, J.C., Lee, A., Kim, H.J., Kim, J.H., Choi, K.J., Kim, Y.H., Kim, N., Bae, M.-H., Kim, J.-J., Kim, B.-K.: Growth characteristics and electrical properties of diameter-selective InAs nanowires. J. Korean Phys. Soc. 62, 1678–1682 (2013)

    Article  Google Scholar 

  20. Tchernycheva, M., Cirlin, G.E., Patriarche, G., Travers, L., Zwiller, V., Perinetti, U., Harmand, J.-C.: Growth and characterization of InP nanowires with InAsP insertions. Nano Lett. 7, 1500–1504 (2007)

    Article  Google Scholar 

  21. Tretiak, S., Piryatinski, A.: Modeling photoexcited carrier interactions in semiconductor nanostructures. Nano Lett. 5, 865–871 (2005)

    Article  Google Scholar 

  22. Treu, J., Bormann, M., Schmeiduch, H., Döblinger, M., Morkötter, S., Matich, S., Wiecha, P., Saller, K., Mayer, B., Bichler, M.: Enhanced luminescence properties of InAs–InAsP core–shell nanowires. Nano Lett. 13, 6070–6077 (2013)

    Article  Google Scholar 

  23. Van Tilburg, J., Algra, R., Immink, W., Verheijen, M., Bakkers, E., Kouwenhoven, L.: Surface passivated InAs/InP core/shell nanowires. Semicond. Sci. Technol. 25, 024011 (2010)

    Article  Google Scholar 

  24. Woodall, J.M., Pettit, G.D., Jackson, T.N., Lanza, C., Kavanagh, K.L., Mayer, J.W.: Fermi-level pinning by misfit dislocations at GaAs interfaces. Phys. Rev. Lett. 51, 1783–1786 (1983)

    Article  Google Scholar 

  25. Xie, S., Kim, H., Lee, W.J., Farrell, A.C., David, J.P., Huffaker, D.L.: InAs/InAsP core/shell nanowire photodiode on a Si substrate. Nano Adv. 1, 110–114 (2016)

    Google Scholar 

  26. Zhang, Y., Wu, J., Aagesen, M., Liu, H.: III–V nanowires and nanowire optoelectronic devices. J. Phys. D Appl. Phys. 48, 463001 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF-2017R1C1B2010906 and NRF-2017M1A2A2048904) and was a part of the project titled ‘Development of real-time measuring system of basic environment for the water quality monitoring of the aquaculture farm,’ funded by the Ministry of Oceans and Fisheries, Korea (No. 20150303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Cheol Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, R., Jo, M.H., Kim, T. et al. Photoresponse and Field Effect Transport Studies in InAsP–InP Core–Shell Nanowires. Electron. Mater. Lett. 14, 357–362 (2018). https://doi.org/10.1007/s13391-018-0041-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0041-2

Keywords

Navigation