Skip to main content
Log in

High speed switching in quantum Dot/Ti-TiOx nonvolatile memory device

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We report a Ti-TiOx/CdSe-ZnS core-shell quantum dot based bipolar nonvolatile resistive memory device. The device exhibits an ON/OFF ratio of 100 and is reproducible. The memory device showed good retention characteristics under stress and excellent stability even after 100,000 cycles of switching operation. The switching speed measured was around 15 ns. The devices are solution processed at room temperature in ambient atmosphere. The operating mechanism is discussed based on charge trapping in quantum dots resulting in the Coulomb blockade effect with a ZnS shell layer and metal-oxide layer acting as the barrier to confine the trapped charges. The proposed mechanism is validated by a three terminal device designed exclusively for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).

    Article  Google Scholar 

  2. G. I. Meijer, Science 319, 1625 (2008).

    Article  Google Scholar 

  3. L. Wang, C. H. Yang, and J. Wen, Electron. Mater. Lett. 11, 505 (2015).

    Article  Google Scholar 

  4. S. H. Jo and W. Lu, Nano Lett. 8, 392 (2008).

    Article  Google Scholar 

  5. H. Silva, H. L. Gomes, Y. G. Pogorelov, P. Stallinga, D. M. de Leeuw, J. P. Araujo, J. B. Sousa, S. C. J. Meskers, G. Kakazei, S. Cardoso, and P. P. Freitas, Appl. Phys. Lett. 94, 202107 (2009).

    Article  Google Scholar 

  6. T. D. Dongale, S. V. Mohite, A. A. Bagade, P. K. Gaikwad, P. S. Patil, R. K. Kamat, and K. Y. Rajpure, Electron. Mater. Lett. 11, 944 (2015).

    Article  Google Scholar 

  7. J. H. Kim and J. S. Yeo, Nano Lett. 15, 2291 (2015).

    Article  Google Scholar 

  8. N. M. Park, J. Shin, B. Kim, K. H. Kim, and W. S. Cheong, Electron. Mater. Lett. 9, 467 (2013).

    Article  Google Scholar 

  9. C. Yan and O. J. F. Martin, ACS Nano 8, 11860 (2014).

    Article  Google Scholar 

  10. G. Telbiz, S. Bugaychuk, E. Leonenko, L. Derzhypolska, V. Gnatovskky, and I. Pryadko, Nanoscale Res. Lett. 10, 196 (2015).

    Article  Google Scholar 

  11. R. K. Dumas and J. Åkerman, Nat. Nanotechnol. 9, 503 (2014).

    Article  Google Scholar 

  12. Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi, and J. H. Fendler, J. Phys. Chem. 100, 8927 (1996).

    Article  Google Scholar 

  13. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996).

    Article  Google Scholar 

  14. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).

    Article  Google Scholar 

  15. E. Kapetanakis, P. Normand, D. Tsoukalas, and K. Beltsios, Appl. Phys. Lett. 80, 2794 (2002).

    Article  Google Scholar 

  16. M. Perego, S. Ferrari, M. Fanciulli, G. B. Assayag, C. Bonafos, M. Carrada, and A. Claverie, J. Appl. Phys. 95, 257 (2004).

    Article  Google Scholar 

  17. D. V. Averin and K. K. Likharev, J. Low Temp. Phys. 62, 345 (1986).

    Article  Google Scholar 

  18. M. Geller, A. Marent, T. Nowozin, D. Bimberg, N. Akçay, and N. Öncan, Appl. Phys. Lett. 92, 092108 (2008).

    Article  Google Scholar 

  19. V. Kannan and J. K. Rhee, Appl. Phys. Lett. 99, 143504 (2011).

    Article  Google Scholar 

  20. V. Kannan and J. K. Rhee, Phys. Chem. Chem. Phys. 15, 12762 (2013).

    Article  Google Scholar 

  21. I. Mihalache, L. M. Veca, M. Kusko, and D. Dragoman, Curr. Appl. Phys. 14, 1625 (2014).

    Article  Google Scholar 

  22. L. P. Ma, J. Liu, and Y. Yang, Appl. Phys. Lett. 80, 2997 (2002).

    Article  Google Scholar 

  23. L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, Appl. Phys. Lett. 84, 607 (2004).

    Article  Google Scholar 

  24. F. Li, D. I. Son, S. M. Seo, H. M. Cha, H. J. Kim, B. J. Kim, J. H. Jung, and T. W. Kim, Appl. Phys. Lett. 91, 122111 (2007).

    Article  Google Scholar 

  25. S. K. Lok, B. K. Li, J. N. Wang, G. K. L. Wong, and I. K. Sou, J. Cryst. Growth 311, 2155 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Kannan or Hyun-Seok Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, V., Kim, HS. & Park, HC. High speed switching in quantum Dot/Ti-TiOx nonvolatile memory device. Electron. Mater. Lett. 12, 323–327 (2016). https://doi.org/10.1007/s13391-015-5410-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5410-5

Keywords

Navigation