Skip to main content
Log in

Space Charge Induced Nonlinear Effects in Quadrupole Ion Traps

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

A theoretical method was proposed in this work to study space charge effects in quadrupole ion traps, including ion trapping, ion motion frequency shift, and nonlinear effects on ion trajectories. The spatial distributions of ion clouds within quadrupole ion traps were first modeled for both 3D and linear ion traps. It is found that the electric field generated by space charge can be expressed as a summation of even-order fields, such as quadrupole field, octopole field, etc. Ion trajectories were then solved using the harmonic balance method. Similar to high-order field effects, space charge will result in an “ocean wave” shape nonlinear resonance curve for an ion under a dipolar excitation. However, the nonlinear resonance curve will be totally shifted to lower frequencies and bend towards ion secular frequency as ion motion amplitude increases, which is just the opposite effect of any even-order field. Based on theoretical derivations, methods to reduce space charge effects were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cooks, R.G.: Special feature: historical collision-induced dissociation: readings and commentary. J. Mass Spectrom. 30(9), 1215–1221 (1995)

    Article  CAS  Google Scholar 

  2. March, R.E.: Quadrupole Ion Trap Mass Spectrometer. Wiley Online Library: (2000)

  3. Coon, J.J., Shabanowitz, J., Hunt, D.F., Syka, J.E.P.: Electron transfer dissociation of peptide anions. J. Am. Soc. Mass Spectrom. 16(6), 880–882 (2005)

    Article  CAS  Google Scholar 

  4. Huzarska, M., Ugalde, I., Kaplan, D.A., Hartmer, R., Easterling, M.L., Polfer, N.C.: Negative electron transfer dissociation of deprotonated phosphopeptide anions: choice of radical cation reagent and competition between electron and proton transfer. Anal. Chem. 82(7), 2873–2878 (2010)

    Article  CAS  Google Scholar 

  5. Vincent, C.E., Rensvold, J.W., Westphall, M.S., Pagliarini, D.J., Coon, J.J.: Automated gas-phase purification for accurate, multiplexed quantification on a stand-alone ion-trap mass spectrometer. Anal. Chem. 85(4), 2079–2086 (2013)

    Article  CAS  Google Scholar 

  6. Vedel, F., Andre, J.: Influence of space charge on the computed statistical properties of stored ions cooled by a buffer gas in a quadrupole rf trap. Phys. Rev. A 29(4), 2098 (1984)

    Article  CAS  Google Scholar 

  7. Cox, K.A., Cleven, C.D., Cooks, R.G.: Mass shifts and local space charge effects observed in the quadrupole ion trap at higher resolution. Int. J. Mass Spectrom. Ion Processes 144(1/2), 47–65 (1995)

    Article  CAS  Google Scholar 

  8. Xiong, X.C., Xu, W., Fang, X., Deng, Y.L., Ouyang, Z.: Accelerated Simulation study of space charge effects in quadrupole ion traps using GPU techniques. J. Am. Soc. Mass Spectrom. 23(10), 1799–1807 (2012)

    Article  CAS  Google Scholar 

  9. Douglas, D.J., Frank, A.J., Mao, D.M.: Linear ion traps in mass spectrometry. Mass Spectrom. Rev. 24(1), 1–29 (2005)

    Article  CAS  Google Scholar 

  10. Plass, W.R., Li, H.Y., Cooks, R.G.: Theory, simulation, and measurement of chemical mass shifts in rf quadrupole ion traps. Int. J. Mass Spectrom. 228(2/3), 237–267 (2003)

    Article  CAS  Google Scholar 

  11. Schwartz, J.C., Senko, M.W., Syka, J.E.P.: A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 13(6), 659–669 (2002)

    Article  CAS  Google Scholar 

  12. Vedel, F., Andre, J., Vedel, M., Brincourt, G.: Computed energy and spatial statistical properties of stored ions cooled by a buffer gas. Phys. Rev. A 27(5), 2321 (1983)

    Article  CAS  Google Scholar 

  13. Guan, S., Marshall, A.: Equilibrium space charge distribution in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 5(2), 64–71 (1994)

    Article  CAS  Google Scholar 

  14. Hemberger, P.H., Nogar, N.S., Williams, J.D., Cooks, R.G., Syka, J.E.P.: Laser photodissociation probe for ion tomography studies in a quadrupole ion-trap mass spectrometer. Chem. Phys. Lett. 191(5), 405–410 (1992)

    Article  CAS  Google Scholar 

  15. Cleven, C.D., Cooks, R.G., Garrett, A.W., Nogar, N.S., Hemberger, P.H.: Radial distributions and ejection times of molecular ions in an ion trap mass spectrometer: a laser tomography study of effects of ion density and molecular type. J. Phys. Chem. 100(1), 40–46 (1996)

    Article  CAS  Google Scholar 

  16. Plass, W.R., Gill, L.A., Bui, H.A., Cooks, R.G.: Ion mobility measurement by DC tomography in an rf quadrupole ion trap. J. Phys. Chem. A 104(21), 5059–5065 (2000)

    Article  CAS  Google Scholar 

  17. Parks, J.H., Szoke, A.: Simulation of collisional relaxation of trapped ion clouds in the presence of space charge fields. J. Chem. Phys. 103(4), 1422–1439 (1995)

    Article  CAS  Google Scholar 

  18. Grinfeld, D.E., Kopaev, I.A., Makarov, A.A., Monastyrskiy, M.A.: Equilibrium ion distribution modeling in rf ion traps and guides with regard to Coulomb effects. Nuclear Instrum. Methods Phys. Res. A 645(1), 141–145 (2011)

    Article  CAS  Google Scholar 

  19. Hager, J.W.: A new linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 16(6), 512–526 (2002)

    Article  CAS  Google Scholar 

  20. Nikolaev, E.N., Heeren, R.M.A., Popov, A.M., Pozdneev, A.V., Chingin, K.S.: Realistic modeling of ion cloud motion in a Fourier transform ion cyclotron resonance cell by use of a particle-in-cell approach. Rapid Commun. Mass Spectrom. 21(22), 3527 (2007)

    Article  CAS  Google Scholar 

  21. Ledford, E.B., Rempel, D.L., Gross, M.L.: Space charge effects in Fourier transform mass spectrometry. II. Mass calibration. Anal. Chem. 56(14), 2744–2748 (1984)

    Article  CAS  Google Scholar 

  22. Amster, I.J.: Fourier transform mass spectrometry. J. Mass Spectrom. 31(12), 1325–1337 (1996)

    Article  CAS  Google Scholar 

  23. Comisarow, M.B., Marshall, A.G.: Frequency-sweep Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 26(4), 489–490 (1974)

    Article  CAS  Google Scholar 

  24. Comisarow, M.B., Marshall, A.G.: Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 25(2), 282–283 (1974)

    Article  CAS  Google Scholar 

  25. Jeffries, J.B., Barlow, S.E., Dunn, G.H.: Theory of space-charge shift of ion cyclotron resonance frequencies. Int. J. Mass Spectrom. Ion Processes 54(1/2), 169–187 (1983)

    Article  CAS  Google Scholar 

  26. Nikolaev, E.N., Miluchihin, N.V., Inoue, M.: Evolution of an ion cloud in a Fourier transform ion cyclotron resonance mass spectrometer during signal detection: its influence on spectral line shape and position. Int. J. Mass Spectrom. Ion Processes 148(3), 145–157 (1995)

    Article  CAS  Google Scholar 

  27. Kharchenko, A., Vladimirov, G., Heeren, R.M.A., Nikolaev, E.N.: Performance of Orbitrap mass analyzer at various space charge and non-ideal field conditions: simulation approach. J. Am. Soc. Mass Spectrom. 23(5), 977–987 (2012)

    Article  CAS  Google Scholar 

  28. Makarov, A., Denisov, E., Kholomeev, A., Baischun, W., Lange, O., Strupat, K., Horning, S.: Performance evaluation of a hybrid linear ion trap/Orbitrap mass spectrometer. Anal. Chem. 78(7), 2113–2120 (2006)

    Article  CAS  Google Scholar 

  29. Hu, Q.Z., Noll, R.J., Li, H.Y., Makarov, A., Hardman, M., Cooks, R.G.: The Orbitrap: a new mass spectrometer. J. Mass Spectrom. 40(4), 430–443 (2005)

    Article  CAS  Google Scholar 

  30. Ding, L., Sudakov, M., Kumashiro, S.: A simulation study of the digital ion trap mass spectrometer. Int. J. Mass Spectrom. 221(2), 117–138 (2002)

    Article  CAS  Google Scholar 

  31. Ding, L., Sudakov, M., Brancia, F.L., Giles, R., Kumashiro, S.: A digital ion trap mass spectrometer coupled with atmospheric pressure ion sources. J. Mass Spectrom. 39(5), 471–484 (2004)

    Article  CAS  Google Scholar 

  32. McLuckey, S.A., Wu, J., Bundy, J.L., Stephenson, J.L., Hurst, G.B.: Oligonucleotide mixture, analysis via electrospray and ion/ion reactions in a quadrupole ion trap. Anal. Chem. 74(5), 976–984 (2002)

    Article  CAS  Google Scholar 

  33. Qiao, H., Gao, C., Mao, D., Konenkov, N., Douglas, D.J.: Space-charge effects with mass-selective axial ejection from a linear quadrupole ion trap. Rapid Commun. Mass Spectrom. 25(23), 3509–3520 (2011)

    Article  CAS  Google Scholar 

  34. Todd, J.F.J., Waldren, R.M., Freer, D.A., Turner, R.B.: The quadrupole ion store (QUISTOR). Part X. Space charge and ion stability. B. On the theoretical distribution and density of stored charge in rf quadrupole fields. Int. J. Mass Spectrom. Ion Phys. 35(1), 107–150 (1980)

    Article  CAS  Google Scholar 

  35. Todd, J.F.J., Waldren, R.M., Mather, R.E.: The quadrupole ion store (QUISTOR). Part IX. Space charge and ion stability. A. Theoretical background and experimental results. Int. J. Mass Spectrom. Ion Physics 34(3), 325–349 (1980)

    CAS  Google Scholar 

  36. Vedel, F.: On the dynamics and energy of ion clouds stored in an rf quadrupole trap. Int. J. Mass Spectrom. Ion Processes 106, 33–61 (1991)

    Article  CAS  Google Scholar 

  37. Li, G.Z., Guan, S.H., Marshall, A.G.: Comparison of equilibrium ion density distribution and trapping force in Penning, Paul, and combined ion traps. J. Am. Soc. Mass Spectrom. 9(5), 473–481 (1998)

    Article  CAS  Google Scholar 

  38. Tolmachev, A.V., Udseth, H.R., Smith, R.D.: Charge capacity limitations of radio frequency ion guides in their use for improved ion accumulation and trapping in mass spectrometry. Anal. Chem. 72(5), 970–978 (2000)

    Article  CAS  Google Scholar 

  39. Prestage, J.D., Dick, G.J., Maleki, L.: New ion trap for frequency standard applications. J. Appl. Phys. 66(3), 1013–1017 (1989)

    Article  Google Scholar 

  40. Campbell, J.M., Collings, B.A., Douglas, D.J.: A new linear ion trap time-of-flight system with tandem mass spectrometry capabilities. Rapid Commun. Mass Spectrom. 12(20), 1463–1474 (1998)

    Article  CAS  Google Scholar 

  41. Chen, S.-P., Comisarow, M.B.: Simple physical models for coulomb-induced frequency shifts and coulomb-induced inhomogeneous broadening for like and unlike ions in Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 5(10), 450–455 (1991)

    Article  CAS  Google Scholar 

  42. Chen, S.-P., Comisarow, M.B.: Modeling Coulomb effects in Fourier-transform ion cyclotron resonance mass spectrometry by charged disks and charged cylinders. Rapid Commun. Mass Spectrom. 6(1), 1–3 (1992)

    Article  Google Scholar 

  43. Mitchell, D.W., Smith, R.D.: Cyclotron motion of two Coulombically interacting ion clouds with implications to Fourier transform ion cyclotron resonance mass spectrometry. Phys. Rev. E. 52(4), 4366 (1995)

    Article  CAS  Google Scholar 

  44. Wang, Y., Huang, Z., Jiang, Y., Xiong, X., Deng, Y., Fang, X., Xu, W.: The coupling effects of hexapole and octopole fields in quadrupole ion traps: a theoretical study. J. Mass Spectrom. 48(8), 937–944 (2013)

    Article  Google Scholar 

  45. Mickens, R.E.: A generalization of the method of harmonic balance. J. Sound Vibration 111(3), 515–518 (1986)

    Article  Google Scholar 

  46. Dehmelt, H.G.: Radiofrequency spectroscopy of stored ions. I: Storage. Adv. At. Mol. Phys. 3, 53 (1967)

    CAS  Google Scholar 

  47. Stafford Jr., G.C., Kelley, P.E., Syka, J.E.P., Reynolds, W.E., Todd, J.F.J.: Recent improvements in and analytical applications of advanced ion trap technology. Int. J. Mass Spectrom. Ion Processes 60(1), 85–98 (1984)

    Article  CAS  Google Scholar 

  48. Xu, W., Chappell, W.J., Ouyang, Z.: Modeling of ion transient response to dipolar AC excitation in a quadrupole ion trap. Int. J. Mass Spectrom. 308(1), 49–55 (2011)

    Article  CAS  Google Scholar 

  49. Doroudi, A., Asl, A.R.: Calculation of secular axial frequencies in a nonlinear ion trap with hexapole, octopole, and decapole superpositions by a modified Lindstedt-Poincare method. Int. J. Mass Spectrom. 309, 104–108 (2012)

    CAS  Google Scholar 

  50. Zhou, X., Zhu, Z., Xiong, C., Chen, R., Xu, W., Qiao, H., Peng, W.-P., Nie, Z., Chen, Y.: Characteristics of stability boundary and frequency in nonlinear ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 21(9), 1588–1595 (2010)

    Article  CAS  Google Scholar 

  51. Zhao, X., Douglas, D.J.: Dipole excitation of ions in linear radio frequency quadrupole ion traps with added multipole fields. Int. J. Mass Spectrom. 275(1/3), 91–103 (2008)

    Article  CAS  Google Scholar 

  52. Sevugarajan, S., Menon, A.G.: Frequency perturbation in nonlinear Paul traps: a simulation study of the effect of geometric aberration, space charge, dipolar excitation, and damping on ion axial secular frequency. Int. J. Mass Spectrom. 197(1), 263–278 (2000)

    Article  CAS  Google Scholar 

  53. Makarov, A.A.: Resonance ejection from the Paul trap: a theoretical treatment incorporating a weak octapole field. Anal. Chem. 68(23), 4257–4263 (1996)

    Article  CAS  Google Scholar 

  54. Goeringer, D.E., Viehland, L.A., Danailov, D.M.: Prediction of collective characteristics for ion ensembles in quadrupole ion traps without trajectory simulations. J. Am. Soc. Mass Spectrom. 17(7), 889–902 (2006)

    Article  CAS  Google Scholar 

  55. Prentice, B.M., McLuckey, S.A.: Dipolar DC collisional activation in a "stretched" 3D ion trap: the effect of higher order fields on rf heating. J. Am. Soc. Mass Spectrom. 23(4), 736–744.

  56. Lammert, S.A., Plass, W.R., Thompson, C.V., Wise, M.B.: Design, optimization, and initial performance of a toroidal rf ion trap mass spectrometer. Int. J. Mass Spectrom. 212(1/3), 25–40 (2001)

    Article  CAS  Google Scholar 

  57. Beaty, E.C.: Calculated electrostatic properties of ion traps. Phys. Rev. A 33(6), 3645 (1986)

    Article  Google Scholar 

  58. Xu, W., Chappell, W.J., Cooks, G.R., Ouyang, Z.: Characterization of electrode surface roughness and its impact on ion trap mass analysis. J. Mass Spectrom. 44, 353–360 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Sciences Foundation of China (21205005) and National Scientific Instrumentation Grant Program of China (2011YQ09000502, 2011YQ09000501 and 2012YQ040140-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Additional information

Dan Guo and Yuzhuo Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, D., Wang, Y., Xiong, X. et al. Space Charge Induced Nonlinear Effects in Quadrupole Ion Traps. J. Am. Soc. Mass Spectrom. 25, 498–508 (2014). https://doi.org/10.1007/s13361-013-0784-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0784-9

Key words

Navigation