Skip to main content

Advertisement

Log in

A novel nanoparticle formulation overcomes multiple types of membrane efflux pumps in human breast cancer cells

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Multidrug resistance (MDR) in cancer cells can involve overexpression of different types of membrane drug efflux pumps and other drug resistance mechanisms. Hence, inhibition of one resistance mechanism may not be therapeutically effective. Previously we demonstrated a new polymer lipid hybrid nanoparticle (PLN) system was able to circumvent drug resistance of P-glycoprotein (P-gp) overexpressing breast cancer cells. The objectives of the present study were 2-fold: (1) to evaluate the ability of the PLN system to overcome two other membrane efflux pumps—multidrug resistance protein 1 (MRP1+) and breast cancer resistance protein (BCRP+) overexpressed on human breast cancer cell lines MCF7 VP (MRP1+) and MCF7 MX (BCRP+); and (2) to evaluate possible synergistic effects of doxorubicin (Dox)–mitomycin C (MMC) in these cell lines. These objectives were accomplished by measuring in vitro cellular uptake, intracellular trafficking, and cytotoxicity (using a clonogenic assay and median effect analysis), of Dox, MMC, or Dox-MMC co-loaded PLN. Treatment of MDR cells with PLN encapsulating single anticancer agents significantly enhanced cell kill compared to free Dox or MMC solutions. Dox-MMC co-loaded PLN were 20–30-folds more effective in killing MDR cells than free drugs. Co-encapsulated Dox-MMC was more effective in killing MDR cells than single agent-encapsulated PLN. Microscopic images showed perinuclear localization of fluorescently labelled PLN in all cell lines. These results are consistent with our previous results for P-gp overexpressing breast cancer cells suggesting the PLN system can overcome multiple types of membrane efflux pumps increasing the cytotoxicity of Dox-MMC at significantly lower doses than free drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 2007;446:749–57.

    Article  PubMed  CAS  Google Scholar 

  2. Higgins CF. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113.

    Article  PubMed  CAS  Google Scholar 

  3. Wong HL, Wu XY, Bendayan R. Multidrug resistance in solid tumors and its reversal. In: Lu Y, Mahato RI, editors. Pharmaceutical perspectives of cancer therapeutics. New York: Springer; 2007. p. 121–48.

    Google Scholar 

  4. Tannock IF. Tumor physiology and drug resistance. Cancer Metastasis Rev. 2001;20:123–32.

    Article  PubMed  CAS  Google Scholar 

  5. Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55:3–29.

    Article  PubMed  CAS  Google Scholar 

  6. Gottesman MM. Mechanisms of cancer drug resistance. Ann Rev Med. 2002;53:615–27.

    Article  PubMed  CAS  Google Scholar 

  7. Mohamed I, Skeel RT. Carcinoma of breast. In: Skeel RT, editor. Handbook of cancer chemotherapy. Philadelphia: Lippincott Williams & Wilkins; 2003. p. 269–93.

    Google Scholar 

  8. Endicott JA, Ling V. The biochemistry of P-glycoprotein mediated multidrug resistance. Ann Rev Biochem. 1989;58:137–71.

    Article  PubMed  CAS  Google Scholar 

  9. Kruh GD, Belinsky MG. The MRP family of drug efflux pumps. Oncogene. 2003;22:7537–52.

    Article  PubMed  CAS  Google Scholar 

  10. Glavinas H, Krajcsi P, Cserepes J, Sarkadi B. The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv. 2004;1:27–42.

    Article  PubMed  CAS  Google Scholar 

  11. Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene. 2003;22:7340–58.

    Article  PubMed  Google Scholar 

  12. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP dependent transporters. Natl Rev Cancer. 2003;2:48–58.

    Article  Google Scholar 

  13. Mellor HR, Callaghan R. Resistance to chemotherapy in cancer: a complex and integrated cellular response. Pharmacology. 2008;81:275–300.

    Article  PubMed  CAS  Google Scholar 

  14. Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci. 2000;11:265–83.

    Article  PubMed  CAS  Google Scholar 

  15. Ford JM, Hait WN. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev. 1990;42(3):155–99.

    PubMed  CAS  Google Scholar 

  16. Lugo MR, Sharom FJ. Interaction of LDS-751 and rhodamine 123 with P-glycoprotein: evidence of stimulating binding of both drugs. Biochem. 2005;44:14020–9.

    Article  CAS  Google Scholar 

  17. Borst P, Evers R, Kool M, Wijnholds J. The multidrug resistance protein family. Biochim Biophys Acta. 1999;1461:347–57.

    Article  PubMed  CAS  Google Scholar 

  18. Akan I, Akan S, Akca H, Savas B, Ozben T. Multidrug resistance-associated protein 1 (MRP1) mediated vincristine resistance: effects of N-acetylecysteine and buthionine sulfoximine. Cancer Cell Int. 2005;5:22.

    Article  PubMed  Google Scholar 

  19. Stavrovskaya AA. Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry. 2000;65:95–106.

    PubMed  CAS  Google Scholar 

  20. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA. 1998;95:15665–700.

    Article  PubMed  CAS  Google Scholar 

  21. Allen JD, Schinkel AH. Multidrug resistance and pharmacological protection mediated by the breast cancer resistance protein. Mol Cancer Ther. 2002;1:427–34.

    Article  PubMed  CAS  Google Scholar 

  22. Robey RW, Polgar O, Deeken J, To KW, Bates SE. ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev. 2007;26(1):39–57.

    Article  PubMed  CAS  Google Scholar 

  23. Ferrero JM, Etienne MC, Formento JL, Francoual M, Rostango P, Peyrottes I, et al. Application of an original RT-PCR-ELISA multiplex assay for MDR1 and MRP, along with p53 determination in node-positive breast cancer patients. Br J Cancer. 2000;82(1):171–7.

    Article  PubMed  CAS  Google Scholar 

  24. Kanzaki A, Toi M, Nakayama K, Bando H, Mutoh M, Uchida T, et al. Expression of multidrug resistance-related transporters in human breast carcinoma. Jpn J Cancer Res. 2001;92(4):452–8.

    Article  PubMed  CAS  Google Scholar 

  25. Chintamani, Singh JP, Mittal MK, Saxena S, Bansal S, Bhatia A, et al. Role of p-glycoprotein expression in predicting response to neoadjuvant chemotherapy in breast cancer—a prospective clinical study. World J Surg Oncol. 2005;14(3):61.

    Article  Google Scholar 

  26. Ito K, Fujimori M, Nakata S, Hama Y, Shingu K, Kobayashi S, et al. Clinical significance of the increased multidrug resistance-associated protein (MRP) gene expression in patients with primary breast cancer. Oncol Res. 1998;10(2):99–109.

    PubMed  CAS  Google Scholar 

  27. Holen I, Wind NS (2011) Multidrug resistance in breast cancer: from in vitro models to clinical studies. J Breast Cancer 2011 (Article ID 967419): 12. doi:10.4061/2011/967419

  28. McHugh K, Callaghan R. Clinical trials on MDR reversal agents. In: Colabufo NA, editor. Multidrug resistance: biological and pharmaceutical advance in antitumour treatment. India: Research Signpost Kerala; 2008. p. 321–53.

    Google Scholar 

  29. Coley HM. Overcoming multidrug resistance in cancer: clinical studies of p-glycoprotein inhibitors. Methods Mol Biol. 2010;596:341–58.

    Article  PubMed  CAS  Google Scholar 

  30. Belpomme D, Gauthier S, Pujade-Lauraine E, Facchini T, Goudier MJ, Krakowski I, et al. Verapamil increases the survival of patients with anthracycline-resistant metastatic breast carcinoma. Ann Oncol. 2000;11(11):1471–6.

    Article  PubMed  CAS  Google Scholar 

  31. Millward MJ, Cantwell BM, Munro NC, Robinson A, Corris PA, Harris AL. Oral verapamil with chemotherapy for advanced non-small cell lung cancer: a randomised study. Br J Cancer. 1993;67(5):1031–5.

    Article  PubMed  CAS  Google Scholar 

  32. Arceci RJ. Can multidrug resistance mechanisms be modified? Brit J Haematol. 2000;110:285–91.

    Article  CAS  Google Scholar 

  33. Viktorsson K, Lewensohn R, Zhivotovsky B. Apoptotic pathways and therapy resistance in human malignancies. Adv Cancer Res. 2005;94:143–96.

    Article  PubMed  CAS  Google Scholar 

  34. Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci. 2000;11(4):265–83.

    Article  PubMed  CAS  Google Scholar 

  35. Greenberg PL, Lee SJ, Advani R, Tallman MS, Sikic BI, Letendre L, et al. Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). J Clin Oncol. 2004;22(6):1078–86.

    Article  PubMed  CAS  Google Scholar 

  36. Nobili S, Landini I, Giglioni B, Mini E. Pharmacological strategies for overcoming multidrug resistance. Curr Drug Targets. 2006;7(7):861–79.

    Article  PubMed  CAS  Google Scholar 

  37. Stupp R, Bauer J, Pagani O, Gerard B, Cerny T, Sessa C, et al. Ventricular arrhythmia and torsade de pointe: dose limiting toxicities of the MDR-modulator S9788 in a phase I trial. Ann Oncol. 1998;9(11):1233–42.

    Article  PubMed  CAS  Google Scholar 

  38. Astriab-Fisher A, Sergueev DS, Fisher M, Shaw BR, Juliano RL. Antisense inhibition of P-glycoprotein expression using peptide-oligonucleotide conjugates. Biochem Pharmacol. 2000;60(1):83–90.

    Article  PubMed  CAS  Google Scholar 

  39. Fisher M, Abramov M, Van Aerschot A, Xu D, Juliano RL, Herdewijn P. Inhibition of MDR1 expression with altritol-modified siRNAs. Nucleic Acids Res. 2007;35(4):1064–74.

    Article  PubMed  CAS  Google Scholar 

  40. Xu D, Kang H, Fisher M, Juliano RL. Strategies for inhibition of MDR1 gene expression. Mol Pharmacol. 2004;66(2):268–75.

    Article  PubMed  CAS  Google Scholar 

  41. Jabr Milane LS, van Vlerken LE, Yadav S, Amiji MM. Multifuntional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev. 2008;34:592–602.

    Article  PubMed  CAS  Google Scholar 

  42. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54:631–51.

    Article  PubMed  CAS  Google Scholar 

  43. Park JW. Liposome based drug delivery in breast cancer treatment. Breast Cancer Res. 2002;4:95–9.

    Article  PubMed  CAS  Google Scholar 

  44. Gu F, Zhang L, Teply BA, Mann N, Wang A, Radovic-Moreno AF, et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci. 2008;7:2586–91.

    Article  Google Scholar 

  45. Wong HL, Bendayan R, Rauth AM, Wu XY. Development of solid lipid nanoparticles containing ionically complexed chemotherapeutic drugs and chemosensitizers. J Pharm Sci. 2004;93:1993–2008.

    Article  PubMed  CAS  Google Scholar 

  46. Wong HL, Rauth AM, Bendayan R, Manias JL, Ramaswamy M, Liu Z, et al. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res. 2006;23:1574–85.

    Article  PubMed  CAS  Google Scholar 

  47. Wong HL, Rauth AM, Bendayan R, Wu XY. In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model. Eur J Pharm Biopharm. 2007;65(3):300–8.

    Article  PubMed  CAS  Google Scholar 

  48. Wong HL, Bendayan R, Rauth AM, Wu XY. Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J Control Release. 2006;116(3):275–84.

    Article  PubMed  CAS  Google Scholar 

  49. Shuhendler AJ, Cheung RY, Manias J, Connor A, Rauth AM, Wu XY. A novel doxorubicin-mitomycin C co-encapsulated nanoparticle exhibits anti-cancer synergy in multidrug resistant human breast cancer cells. Breast Cancer Res Treatment. 2010;119:255–69.

    Article  CAS  Google Scholar 

  50. Shuhendler AJ, O’Brien P, Rauth AM, Wu XY. On the synergistic effect of doxorubicin and mitomycin C against breast cancer cells. Drug Metabolism Drug Inter. 2008;22(4):201–33.

    Article  Google Scholar 

  51. Soule HD, Vazguez J, Long A, Albert S, Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst. 1973;51(5):1409–16.

    PubMed  CAS  Google Scholar 

  52. Schneider E, Horton J, Yang CH, Nagagawa M, Cowan KH. Multidrug resistance-associated protein gene overexpression and reduced drug sensitivity of topoisomerase II in a human breast carcinoma MCF-7 cell line selected for etoposide resistance. Cancer Res. 1994;54:152–8.

    PubMed  CAS  Google Scholar 

  53. Volk E, Rohde K, Rhee M, McGuire JJ, Doyle LA, Ross DD, et al. Methotrexate cross-resistance in a mitoxantrone-selected multidrug-resistant MCF7 breast cancer cell line is attributable to enhanced energy-dependent drug efflux. Cancer Res. 2000;60:3514–21.

    PubMed  CAS  Google Scholar 

  54. Bristow RG, Hill RP. Molecular and cellular basis of radiotherapy. Toronto: McGraw-Hill; 1998.

    Google Scholar 

  55. Chou TC. Theoretical basis, experimental design and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621–81.

    Article  PubMed  CAS  Google Scholar 

  56. Chou TC, Talalay P. Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.

    Article  PubMed  CAS  Google Scholar 

  57. Chang TT, Gulati SC, Chou TC, Vega R, Gandola L, Ibrahim SM, et al. Synergistic effect of 4-hydroperoxycyclophosphamide and etoposide on a human promyelocytic leukemia cell line (HL-60) demonstrated by computer analysis. Cancer Res. 1985;45:2434–9.

    PubMed  CAS  Google Scholar 

  58. Bible KC, Kaufmann SH. Cytotoxic synergy between flavopiridol (NSC 649890, L86-8275) and various antineoplastic agents: the importance of sequence of administration. Cancer Res. 1997;57:3375–80.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Canadian Institutes of Health Research and Canadian Breast Cancer Research Alliance. The University of Toronto Fellowship to P.P., Scholarship from the National Science and Engineering Research Council of Canada and the Ben Cohen Fund to AJS, and HPESO samples from Drs. Z. Liu and S. Erhan are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Yu Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, P., Cheng, J., Shuhendler, A. et al. A novel nanoparticle formulation overcomes multiple types of membrane efflux pumps in human breast cancer cells. Drug Deliv. and Transl. Res. 2, 95–105 (2012). https://doi.org/10.1007/s13346-011-0051-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-011-0051-1

Keywords

Navigation