Skip to main content

Advertisement

Log in

Heterozygote advantage of methylenetetrahydrofolate reductase polymorphisms on clinical outcomes in advanced non-small cell lung cancer (NSCLC) patients treated with platinum-based chemotherapy

  • Research Article
  • Published:
Tumor Biology

Abstract

Methylenetetrahydrofolate reductase (MTHFR) enzyme is essential for transmethylation reactions including DNA methylation and DNA synthesis and thereby may contribute to cancer prognosis. In our study, a total of 1,004 advanced non-small cell lung cancer (NSCLC) patients receiving first-line, platinum-based chemotherapy regimens were used for genotyping 10 tag single nucleotide polymorphisms (SNPs) of MTHFR. Association was assessed between the SNPs and treatment outcomes. We found that polymorphism of rs1537514 showed the most significant effect: heterozygote associated with better clinical benefit (P = 0.002) and decreased risk of grade 3 or 4 gastrointestinal toxicity (P = 0.027), while the mutant homozygote associated with increased risk of severe gastrointestinal toxicity (P = 0.031) and thrombocytopenia (P = 0.009). The heterozygotes of exon polymorphisms (rs1801131, rs1801133) also yielded better clinical benefit (P = 0.030 for rs1801131) and decreased risk of severe gastrointestinal toxicity (P = 0.004 for rs1801131) or thrombocytopenia (P = 0.016 for 1801133). However, overall survival (OS) and progression-free survival (PFS) did not differ for the MTHFR polymorphisms, except for heterozygote of rs1537514 showing significant effects with better PFS (P = 0.022). Clinical factors as age, gender, and smoking status had significant effects for the OS (P = 0.003, 0.002, and 0.012, respectively) while performance status and chemotherapy regimens for PFS (P = 0.001 and 3.9 × 10−6, respectively). The results indicate that a heterozygous advantage may exist in certain MTHFR variants, and the polymorphisms (especially rs1537514) may play a predictive role of treatment efficacy and adverse effects in NSCLC patients treated with platinum-based chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CI:

Confidence interval

HR:

Hazard ratio

LD:

Linkage disequilibrium

MTHFR:

5,10-Methylenetetrahydrofolate reductase

NSCLC:

Non-small cell lung cancer

OR:

Odds ratio

OS:

Overall survival

PFS:

Progression-free survival

PS:

Performance status

SNP:

Single nucleotide polymorphism

TNM:

Tumor-node-metastasis

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi:10.3322/caac.20107.

    Article  PubMed  Google Scholar 

  2. Zhao X, Wang X, Wu W, Gao Z, Wu J, Garfield DH, et al. Matrix metalloproteinase-2 polymorphisms and clinical outcome of Chinese patients with nonsmall cell lung cancer treated with first-line, platinum-based chemotherapy. Cancer. 2012;118(14):3587–98. doi:10.1002/cncr.26669.

    Article  CAS  PubMed  Google Scholar 

  3. Wang L, Liao ML, Li LY, Wan HY, Xu N, Liu JW, et al. Clinical benefit of gemcitabine plus cisplatin 3-week regimen for patients with advanced non-small cell lung cancer: a prospective observational study. Chin Med J (Engl). 2004;117(11):1607–10.

    CAS  Google Scholar 

  4. Han B, Gao G, Wu W, Gao Z, Zhao X, Li L, et al. Association of ABCC2 polymorphisms with platinum-based chemotherapy response and severe toxicity in non-small cell lung cancer patients. Lung Cancer. 2011;72(2):238–43. doi:10.1016/j.lungcan.2010.09.001.

    Article  PubMed  Google Scholar 

  5. Shiraishi K, Kohno T, Tanai C, Goto Y, Kuchiba A, Yamamoto S, et al. Association of DNA repair gene polymorphisms with response to platinum-based doublet chemotherapy in patients with non-small-cell lung cancer. J Clin Oncol. 2010;28(33):4945–52. doi:10.1200/JCO.2010.30.5334.

    Article  CAS  PubMed  Google Scholar 

  6. Kim YI. Role of folate in colon cancer development and progression. J Nutr. 2003;133(11 Suppl 1):3731S–9.

    CAS  PubMed  Google Scholar 

  7. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10(1):111–3. doi:10.1038/ng0595-111.

    Article  CAS  PubMed  Google Scholar 

  8. Shen M, Rothman N, Berndt SI, He X, Yeager M, Welch R, et al. Polymorphisms in folate metabolic genes and lung cancer risk in Xuan Wei. China Lung Cancer. 2005;49(3):299–309. doi:10.1016/j.lungcan.2005.04.002.

    Article  Google Scholar 

  9. Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci U S A. 1997;94(7):3290–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Crott JW, Mashiyama ST, Ames BN, Fenech M. The effect of folic acid deficiency and MTHFR C677T polymorphism on chromosome damage in human lymphocytes in vitro. Cancer Epidemiol Biomarkers Prev. 2001;10(10):1089–96.

    CAS  PubMed  Google Scholar 

  11. Ames BN. DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutat Res. 2001;475(1–2):7–20.

    Article  CAS  PubMed  Google Scholar 

  12. Wajed SA, Laird PW, DeMeester TR. DNA methylation: an alternative pathway to cancer. Ann Surg. 2001;234(1):10–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hur K, Cejas P, Feliu J, Moreno-Rubio J, Burgos E, Boland CR, et al. Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut. 2013. doi:10.1136/gutjnl-2012-304219.

    PubMed Central  Google Scholar 

  14. Afzal S, Gusella M, Vainer B, Vogel UB, Andersen JT, Broedbaek K, et al. Combinations of polymorphisms in genes involved in the 5-Fluorouracil metabolism pathway are associated with gastrointestinal toxicity in chemotherapy-treated colorectal cancer patients. Clin Cancer Res. 2011;17(11):3822–9. doi:10.1158/1078-0432.CCR-11-0304.

    Article  CAS  PubMed  Google Scholar 

  15. Weisberg IS, Jacques PF, Selhub J, Bostom AG, Chen Z, Curtis Ellison R, et al. The 1298A– > C polymorphism in methylenetetrahydrofolate reductase (MTHFR): in vitro expression and association with homocysteine. Atherosclerosis. 2001;156(2):409–15.

    Article  CAS  PubMed  Google Scholar 

  16. Hong W, Wang K, Zhang YP, Kou JY, Hong D, Su D, et al. Methylenetetrahydrofolate reductase C677T polymorphism predicts response and time to progression to gemcitabine-based chemotherapy for advanced non-small cell lung cancer in a Chinese Han population. J Zhejiang Univ Sci B. 2013;14(3):207–15. doi:10.1631/jzus.B1200101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Cui LH, Yu Z, Zhang TT, Shin MH, Kim HN, Choi JS. Influence of polymorphisms in MTHFR 677 C– > T, TYMS 3R– > 2R and MTR 2756 A– > G on NSCLC risk and response to platinum-based chemotherapy in advanced NSCLC. Pharmacogenomics. 2011;12(6):797–808. doi:10.2217/pgs.11.27.

    Article  CAS  PubMed  Google Scholar 

  18. Smit EF, Burgers SA, Biesma B, Smit HJ, Eppinga P, Dingemans AM, et al. Randomized phase II and pharmacogenetic study of pemetrexed compared with pemetrexed plus carboplatin in pretreated patients with advanced non-small-cell lung cancer. J Clin Oncol. 2009;27(12):2038–45. doi:10.1200/JCO.2008.19.1650.

    Article  CAS  PubMed  Google Scholar 

  19. Shi M, Gao C, Wu J, Feng J, Cao H, Lu J, et al. Genetic polymorphisms in methylenetetrahydrofolate reductase and clinical response to chemotherapy in non-small cell lung cancer. Zhongguo Fei Ai Za Zhi. 2006;9(6):519–24. doi:10.3779/j.issn.1009-3419.2006.06.09.

    CAS  PubMed  Google Scholar 

  20. Alberola V, Sarries C, Rosell R, Taron M, de las Penas R, Camps C, et al. Effect of the methylenetetrahydrofolate reductase C677T polymorphism on patients with cisplatin/gemcitabine-treated stage IV non-small-cell lung cancer. Clin Lung Cancer. 2004;5(6):360–5.

    Article  CAS  PubMed  Google Scholar 

  21. Tiseo M, Giovannetti E, Tibaldi C, Camerini A, Di Costanzo F, Barbieri F, et al. Pharmacogenetic study of patients with advanced non-small cell lung cancer (NSCLC) treated with second-line pemetrexed or pemetrexed-carboplatin. Lung Cancer. 2012;78(1):92–9. doi:10.1016/j.lungcan.2012.07.009.

    Article  PubMed  Google Scholar 

  22. Li WJ, Jiang H, Fang XJ, Ye HL, Liu MH, Liu YW, et al. Polymorphisms in thymidylate synthase and reduced folate carrier () genes predict survival outcome in advanced non-small cell lung cancer patients treated with pemetrexed-based chemotherapy. Oncol Lett. 2013;5(4):1165–70. doi:10.3892/ol.2013.1175.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Yin J, Lu C, Gu J, Lippman SM, Hildebrandt MA, Lin J, et al. Common genetic variants in cell cycle pathway are associated with survival in stage III-IV non-small-cell lung cancer. Carcinogenesis. 2011;32(12):1867–71. doi:10.1093/carcin/bgr217.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Yan Y, Gong Z, Zhang L, Li Y, Li X, Zhu L, et al. Association of follicle-stimulating hormone receptor polymorphisms with ovarian response in Chinese women: a prospective clinical study. PLoS One. 2013;8(10):e78138. doi:10.1371/journal.pone.0078138.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Bi N, Yang M, Zhang L, Chen X, Ji W, Ou G, et al. Cyclooxygenase-2 genetic variants are associated with survival in unresectable locally advanced non-small cell lung cancer. Clin Cancer Res. 2010;16(8):2383–90. doi:10.1158/1078-0432.CCR-09-2793.

    Article  CAS  PubMed  Google Scholar 

  26. Stone N, Pangilinan F, Molloy AM, Shane B, Scott JM, Ueland PM, et al. Bioinformatic and genetic association analysis of microRNA target sites in one-carbon metabolism genes. Plos One. 2011;6(7):e21851. doi:10.1371/journal.pone.0021851.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97. doi:10.1016/s0092-8674(04)00045-5.

    Article  CAS  PubMed  Google Scholar 

  28. Grubb BR, Gabriel SE. Intestinal physiology and pathology in gene-targeted mouse models of cystic fibrosis. Am J Physiol. 1997;273(2 Pt 1):G258–66.

    CAS  PubMed  Google Scholar 

  29. Wang SS, Abdou AM, Morton LM, Thomas R, Cerhan JR, Gao X, et al. Human leukocyte antigen class I and II alleles in non-Hodgkin lymphoma etiology. Blood. 2010;115(23):4820–3. doi:10.1182/blood-2010-01-266775.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Gochhait S, Bukhari SI, Bairwa N, Vadhera S, Darvishi K, Raish M, et al. Implication of BRCA2–26G > A 5′ untranslated region polymorphism in susceptibility to sporadic breast cancer and its modulation by p53 codon 72 Arg > Pro polymorphism. Breast Cancer Res BCR. 2007;9(5):R71. doi:10.1186/bcr1780.

    Article  Google Scholar 

  31. Cagliani R, Riva S, Marino C, Fumagalli M, D’Angelo MG, Riva V, et al. Variants in SNAP25 are targets of natural selection and influence verbal performances in women. Cell Mol Life Sci CMLS. 2012;69(10):1705–15. doi:10.1007/s00018-011-0896-y.

    Article  CAS  Google Scholar 

  32. Huebner C, Browning BL, Petermann I, Han DY, Philpott M, Barclay M, et al. Genetic analysis of MDR1 and inflammatory bowel disease reveals protective effect of heterozygous variants for ulcerative colitis. Inflamm Bowel Dis. 2009;15(12):1784–93. doi:10.1002/ibd.21019.

    Article  PubMed  Google Scholar 

  33. Kim YI. Role of the MTHFR polymorphisms in cancer risk modification and treatment. Future Oncol. 2009;5(4):523–42. doi:10.2217/fon.09.26.

    Article  CAS  PubMed  Google Scholar 

  34. Igari S, Ohtaki A, Yamanaka Y, Sato Y, Yohda M, Odaka M, et al. Properties and crystal structure of methylenetetrahydrofolate reductase from Thermus thermophilus HB8. PLoS One. 2011;6(8):e23716. doi:10.1371/journal.pone.0023716.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Pejchal R, Campbell E, Guenther BD, Lennon BW, Matthews RG, Ludwig ML. Structural perturbations in the Ala – > Val polymorphism of methylenetetrahydrofolate reductase: how binding of folates may protect against inactivation. Biochemistry. 2006;45(15):4808–18. doi:10.1021/bi052294c.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. DeVos L, Chanson A, Liu Z, Ciappio ED, Parnell LD, Mason JB, et al. Associations between single nucleotide polymorphisms in folate uptake and metabolizing genes with blood folate, homocysteine, and DNA uracil concentrations. Am J Clin Nutr. 2008;88(4):1149–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Afzal S, Jensen SA, Vainer B, Vogel U, Matsen JP, Sorensen JB, et al. MTHFR polymorphisms and 5-FU-based adjuvant chemotherapy in colorectal cancer. Ann Oncol Off J Eur Soc Med Oncol / ESMO. 2009;20(10):1660–6. doi:10.1093/annonc/mdp046.

    Article  CAS  Google Scholar 

  38. van der Put NM, Gabreels F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet. 1998;62(5):1044–51. doi:10.1086/301825.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Tsai SJ, Hong CJ, Yeh HL, Liou YJ, Yang AC, Liu ME, et al. Heterozygote advantage of the MTHFR C677T polymorphism on specific cognitive performance in elderly Chinese males without dementia. Dement Geriatr Cogn Disord. 2011;32(3):159–63. doi:10.1159/000333074.

    Article  PubMed  Google Scholar 

  40. Weitkamp LR, Tackels DC, Hunter AG, Holmes LB, Schwartz CE. Heterozygote advantage of the MTHFR gene in patients with neural-tube defect and their relatives. Lancet. 1998;351(9115):1554–5.

    Article  CAS  PubMed  Google Scholar 

  41. Spellicy CJ, Northrup H, Fletcher JM, Cirino PT, Dennis M, Morrison AC, et al. Folate metabolism gene 5,10-methylenetetrahydrofolate reductase (MTHFR) is associated with ADHD in myelomeningocele patients. PLoS One. 2012;7(12):e51330. doi:10.1371/journal.pone.0051330.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Cheng X, Li T, Wang H, Zhu D, Ma C, Ma B, et al. Methylenetetrahydrofolate reductase gene polymorphisms and cerebral palsy in Chinese infants. J Hum Genet. 2011;56(1):17–21. doi:10.1038/jhg.2010.127.

    Article  CAS  PubMed  Google Scholar 

  43. Wu C, Gong Y, Sun A, Zhang Y, Zhang C, Zhang W, et al. The human MTHFR rs4846049 polymorphism increases coronary heart disease risk through modifying miRNA binding. Nutr Metab Cardiovasc Dis NMCD. 2013;23(7):693–8. doi:10.1016/j.numecd.2012.02.009.

    Article  CAS  Google Scholar 

  44. Williams BA, Sugimura H, Endo C, Nichols FC, Cassivi SD, Allen MS, et al. Predicting postrecurrence survival among completely resected nonsmall-cell lung cancer patients. Ann Thorac Surg. 2006;81(3):1021–7. doi:10.1016/j.athoracsur.2005.09.020.

    Article  PubMed  Google Scholar 

  45. Park SY, Lee JG, Kim J, Bae MK, Lee CY, Kim DJ, et al. The influence of smoking intensity on the clinicopathologic features and survival of patients with surgically treated non-small cell lung cancer. Lung Cancer. 2013;81(3):480–6. doi:10.1016/j.lungcan.2013.07.002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge greatly the collaboration received from the participating hospitals and the staff. This work was supported by the China National High-Tech Research and Development Program grant (2012AA02A517, 2012AA02A518), National Basic Research Program (973 program) of China (Grant No. 2011CB503802), Shanghai Science and Technology Research Program (09JC1402200, 10410709100), and Scientific and Technological Support Plans from Jiangsu Province (BE2010715).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daru Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Overview of previous studies of MTHFR polymorphisms and non-small cell lung cancer with platinum-related treatment (DOCX 14 kb)

Table S2

Demographic and clinical features of NSCLC patients (n = 1,004) by clinical benefit and grade 3 or 4 toxicities (DOCX 21 kb)

Table S3

Ten Genotyped Single-Nucleotide Polymorphisms of the MTHFR gene (DOCX 18 kb)

Table S4

Pairwise linkage disequilibrium relations among the 10 tag SNPs of MTHFR by D′ and r2 (DOCX 15 kb)

Table S5

The association between MTHFR polymorphisms and severe toxicities in patient with platinum-based chemotherapy (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Shao, M., Wang, S. et al. Heterozygote advantage of methylenetetrahydrofolate reductase polymorphisms on clinical outcomes in advanced non-small cell lung cancer (NSCLC) patients treated with platinum-based chemotherapy. Tumor Biol. 35, 11159–11170 (2014). https://doi.org/10.1007/s13277-014-2427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2427-6

Keywords

Navigation