Skip to main content

Advertisement

Log in

Hexokinase 2 overexpression promotes the proliferation and survival of laryngeal squamous cell carcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Proliferating cancer cells preferentially use anaerobic glycolysis rather than oxidative phosphorylation for energy production. Hexokinase 2 (HK2) is highly expressed in many malignant cells and is necessary for anaerobic glycolysis. The role of HK2 in laryngeal squamous cell carcinoma (LSCC) is unknown. In this study, the expression of HK2 in LSCC was investigated and the effect of inhibiting HK2 expression with small hairpin RNA (shRNA) on tumor growth was investigated. Using immunohistochemistry, HK2 expression was assessed in LSCC tissues. Human laryngeal carcinoma Hep-2 cells were stably transfected with a plasmid expressing HK2 shRNA (pGenesil-1.1-HK2) and were compared to control cells with respect to the cell cycle, cell viability, apoptosis, and their ability to form xenograft tumors. HK2 expression was significantly higher in LSCC than in papilloma or glottis polypus. Tumor samples of higher T, N, and TNM stage often had stronger HK2 staining. HK2 shRNA reduced HK2 mRNA, protein levels, and HK activity in Hep-2 cells. HK2 cells expressing shRNA demonstrated a higher G0–G1 ratio, increased apoptosis, and reduced viability. Xenograft tumors derived from cells expressing HK2 shRNA were smaller and had lower proliferation than those from untransfected or control-plasmid-transfected cells. In conclusion, depletion of HK2 expression resulted in reduced xenograft tumor development likely by reducing proliferation, altering the cell cycle, reducing cell viability and activating apoptosis. These data suggest that HK2 plays an important role in the development of LSCC and represents a potential therapeutic target for LSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choong N, Vokes E. Expanding role of the medical oncologist in the management of head and neck cancer. CA Cancer J Clin. 2008;58:32–53.

    Article  PubMed  Google Scholar 

  2. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61:212–36.

    Article  PubMed  Google Scholar 

  3. Ferlay J, Shin H-R, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: Globocan 2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  PubMed  Google Scholar 

  4. Barnes L, Tse LLY, Hunt JL, Brandwein-Gensler M, Urken M, Slootweg P, et al. Chapter 3, Tumors of hypopharynx, larynx and trachea. In: Barnes L, Eveson JW, Reichart P, Sidransky D, editors. Pathology and genetics of head and neck tumours. Lyon: IARC Press; 2005. p. 107–21.

  5. Rodrigo JP, Suarez C, Silver CE, Rinaldo A, Ambrosch P, Fagan JJ, et al. Transoral laser surgery for supraglottic cancer. Head Neck. 2008;30:658–66.

    Article  PubMed  Google Scholar 

  6. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  7. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell. 2008;13:472–82.

    Article  CAS  PubMed  Google Scholar 

  8. Kaelin Jr WG, Thompson CB. Q&A: cancer: clues from cell metabolism. Nature. 2010;465:562–4.

    Article  CAS  PubMed  Google Scholar 

  9. Mathupala SP, Ko YH, Pedersen PL. Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene. 2006;25:4777–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH. Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta. 2002;1555:14–20.

    Article  CAS  PubMed  Google Scholar 

  11. Ramsay EE, Hogg PJ, Dilda PJ. Mitochondrial metabolism inhibitors for cancer therapy. Pharm Res. 2011;28:2731–44.

    Article  CAS  PubMed  Google Scholar 

  12. Sotgia F, Martinez-Outschoorn UE, Lisanti MP. Cancer metabolism: new validated targets for drug discovery. Oncotarget. 2013;4:1309–16.

    PubMed Central  PubMed  Google Scholar 

  13. Volker H-U, Scheich M, Schmausser B, Kammerer U, Eck M. Overexpression of transketolase tktl1 is associated with shorter survival in laryngeal squamous cell carcinomas. Eur Arch Otorhinolaryngol. 2007;264:1431–6.

    Article  PubMed  Google Scholar 

  14. Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 2011;208:313–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ahn KJ, Hwang HS, Park JH, Bang SH, Kang WJ, Yun M, et al. Evaluation of the role of hexokinase type II in cellular proliferation and apoptosis using human hepatocellular carcinoma cell lines. J Nucl Med. 2009;50:1525–32.

    Article  CAS  PubMed  Google Scholar 

  16. Mineta H, Miura K, Takebayashi S, Misawa K, Araki K, Misawa Y, et al. Prognostic value of glucose transporter 1 expression in patients with hypopharyngeal carcinoma. Anticancer Res. 2002;22:3489–94.

    PubMed  Google Scholar 

  17. Oliver RJ, Woodwards RTM, Sloan P, Thakker NS, Stratford IJ, Airley RE. Prognostic value of facilitative glucose transporter Glut-1 in oral squamous cell carcinomas treated by surgical resection; results of EORTC translational research fund studies. Eur J Cancer. 2004;40:503–7.

    Article  CAS  PubMed  Google Scholar 

  18. Paudyal B, Oriuchi N, Paudyal P, Higuchi T, Nakajima T, Endo K. Expression of glucose transporters and hexokinase II in cholangiocellular carcinoma compared using [18F]-2-fluro-2-deoxy-d-glucose positron emission tomography. Cancer Sci. 2008;99:260–6.

    Article  CAS  PubMed  Google Scholar 

  19. Yamada T, Uchida M, Kwang-Lee K, Kitamura N, Yoshimura T, Sasabe E, et al. Correlation of metabolism/hypoxia markers and fluorodeoxyglucose uptake in oral squamous cell carcinomas. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113:464–71.

    Article  PubMed  Google Scholar 

  20. Rho M, Perazella MA. Nephrotoxicity associated with antiretroviral therapy in HIV-infected patients. Curr Drug Saf. 2007;2:147–54.

    Article  CAS  PubMed  Google Scholar 

  21. Kwee SA, Hernandez B, Chan O, Wong L. Choline kinase alpha and hexokinase-2 protein expression in hepatocellular carcinoma: association with survival. PLoS One. 2012;7(10):e46591.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Yoshino H, Enokida H, Itesako T, Kojima S, Kinoshita T, Tatarano S, et al. The tumor-suppressive microRNA-143/145 cluster targets hexokinase-2 in renal cell carcinoma. Cancer Sci. 2013;104:1567–74.

    Google Scholar 

  23. Palmieri D, Fitzgerald D, Shreeve SM, Hua E, Bronder JL, Weil RJ, et al. Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol Cancer Res. 2009;7:1438–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Min JW, Kim KI, Kim HA, Kim EK, Noh WC, Jeon HB, et al. INPP4B-mediated tumor resistance is associated with modulation of glucose metabolism via hexokinase 2 regulation in laryngeal cancer cells. Biochem Biophys Res Commun. 2013;440:137–42.

    Article  CAS  PubMed  Google Scholar 

  25. Peng Q, Zhou Q, Zhou J, Zhong D, Pan F, Liang H. Stable RNA interference of hexokinase II gene inhibits human colon cancer LoVo cell growth in vitro and in vivo. Cancer Biol Ther. 2008;7:1128–35.

    Article  CAS  PubMed  Google Scholar 

  26. Kim JE, Ahn B-C, Hwang M-H, Jeon YH, Jeong SY, Lee S-W, et al. Combined RNA interference of hexokinase II and (131)I-sodium iodide symporter gene therapy for anaplastic thyroid carcinoma. J Nucl Med. 2011;52:1756–63.

    Article  CAS  PubMed  Google Scholar 

  27. Kim W, Yoon J-H, Jeong J-M, Cheon G-J, Lee T-S, Yang J-I, et al. Apoptosis-inducing antitumor efficacy of hexokinase II inhibitor in hepatocellular carcinoma. Mol Cancer Ther. 2007;6:2554–62.

    Article  CAS  PubMed  Google Scholar 

  28. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.

    Article  CAS  PubMed  Google Scholar 

  29. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–9.

    Article  CAS  PubMed  Google Scholar 

  30. Shaw RJ. Glucose metabolism and cancer. Curr Opin Cell Biol. 2006;18:598–608.

    Article  CAS  PubMed  Google Scholar 

  31. Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, et al. Hexokinase–mitochondria interaction mediated by akt is required to inhibit apoptosis in the presence or absence of bax and bak. Mol Cell. 2004;16:819–30.

    Article  CAS  PubMed  Google Scholar 

  32. Pastorino JG, Shulga N, Hoek JB. Mitochondrial binding of hexokinase II inhibits bax-induced cytochrome c release and apoptosis. J Biol Chem. 2002;277:7610–8.

    Article  CAS  PubMed  Google Scholar 

  33. Yeung SJ, Pan J, Lee MH. Roles of p53, myc and hif-1 in regulating glycolysis — the seventh hallmark of cancer. Cell Mol Life Sci. 2008;65:3981–99.

    Article  CAS  PubMed  Google Scholar 

  34. Li DW, Zhou L, Jin B, Xie J, Dong P. Expression and significance of hypoxia-inducible factor-1alpha and survivin in laryngeal carcinoma tissue and cells. Otolaryngol Head Neck Surg: Off J Am Acad Otolaryngol Head Neck Surg. 2013;148:75–81.

    Article  Google Scholar 

  35. Krecicki T, Fraczek M, Jelen M, Zatonski T, Szkudlarek T, Dus D. Expression of c-myc oncoprotein in laryngeal squamous cell carcinoma. Acta Otolaryngol. 2004;124:634–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (No. 30801282) and the Research Fund for the Doctoral Program of Higher Education of China (No. 20020487062).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sulin Zhang or Weijia Kong.

Additional information

J. Chen and S. Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Zhang, S., Li, Y. et al. Hexokinase 2 overexpression promotes the proliferation and survival of laryngeal squamous cell carcinoma. Tumor Biol. 35, 3743–3753 (2014). https://doi.org/10.1007/s13277-013-1496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1496-2

Keywords

Navigation