Skip to main content

Advertisement

Log in

Role of VHL gene mutation in human renal cell carcinoma

  • Review
  • Published:
Tumor Biology

Abstract

The Von Hippel–Lindau (VHL) is an inherited neoplasia syndrome caused by the inactivation of VHL tumor suppressor gene, and somatic mutation of this gene has been related to the development of sporadic clear cell renal carcinoma. The affected individuals are at higher risk for the development of tumor in other organs, which include pheochromocytomas, retinal angioma, pancreatic cysts, and CNS hemangioblastomas. The VHL mRNA encodes a protein (pVHL) that contains 213 amino acid residues which migrate with an apparent molecular weight of 24 to 30 kDa. The VHL gene protein has multiple functions that are linked to tumor suppression, but the best recognized and evidently linked to the development of renal cell carcinoma (RCC) is inhibition of hypoxia-inducible factor (HIF), as well as plays a role in targeting HIF for ubiquitin-mediated degradation. Aberrations in VHL's function, either through mutation or promoter hypermethylation, lead to the accumulation of HIF, which will transcriptionally upregulate a sequence of hypoxia responsive genes, including epidermal growth factor, vascular endothelial growth factor, platelet-derived growth factor, and other proangiogenic factors, resulting in upregulated blood vessel growth, one of the prerequisites of a tumor. HIF plays a critical role in pVHL-defective tumor formation, raising the possibility that drugs directed against HIF or its downstream targets (such as vascular endothelial growth factor) may one day play a role in the treatment of RCC. Moreover, a number of drugs have been developed that target HIF-responsive gene products, many of these targeted therapies have demonstrated significant activity in kidney cancer clinical trials and signify substantive advances in the treatment of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kashyap MK, Kumar A, Emelianenko N, Kashyap A, Kaushik R, Huang R, et al. Biochemical and molecular markers in renal cell carcinoma: an update and future prospects. Biomarkers. 2005;10:258–94.

    Article  PubMed  CAS  Google Scholar 

  2. Mancuso A, Sternberg CN. New treatments for metastatic kidney cancer. Can J Urol. 2005;12:66.

    PubMed  Google Scholar 

  3. Ljungberg B, Campbell SC, Cho HY, Jacqmin D, Lee JE, Weikert S, et al. The epidemiology of renal cell carcinoma. Eur Urol. 2011;60(4):e29–36.

    Article  Google Scholar 

  4. Lawrence TS, Ten Haken RK, Giaccia A. Principles of radiation oncology. Cancer: principles and practice of oncology. 8th ed. Philadelphia: Williams and Wilkins; 2008.

    Google Scholar 

  5. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.

    Article  PubMed  Google Scholar 

  6. Lipworth L, Tarone RE, McLaughlin JK. The epidemiology of renal cell carcinoma. J Urol. 2006;176:2353–8.

    Article  PubMed  Google Scholar 

  7. Malvezzi M, Arfé A, Bertuccio P, Levi F, La Vecchia C, Negri E. European cancer mortality predictions for the year 2011. Ann Oncol. 2011;22:947.

    Article  PubMed  CAS  Google Scholar 

  8. Ferlay J, Shin HR, Bray F, Parkin DM. Globocan 2008 v1. 2, cancer incidence and mortality worldwide: IARC CancerBase no. 10 (internet). International Agency for Research on Cancer, Lyon, France, 2010.

  9. Hollenbeak CS, Nikkel LE, Schaefer EW, Alemao E, Ghahramani N, Raman JD. Determinants of medicare all-cause costs among elderly patients with renal cell carcinoma. J Manag Care Pharm. 2011;17:610.

    PubMed  Google Scholar 

  10. Humphreys BD. Genetic tracing of the epithelial lineage during mammalian kidney repair. Kidney Int Suppl. 2011;1:83–6.

    Article  Google Scholar 

  11. Bodmer D, Van Den Hurk W, van Groningen JJM, Eleveld MJ, Martens GJM, Weterman MAJ, et al. Understanding familial and non-familial renal cell cancer. Hum Mol Genet. 2002;11:2489.

    Article  PubMed  CAS  Google Scholar 

  12. Chow WH, Dong LM, Devesa SS. Epidemiology and risk factors for kidney cancer. Nat Rev Urol. 2010;7:245.

    Article  PubMed  Google Scholar 

  13. Nagaprashantha LD, Vatsyayan R, Singhal J, Lelsani P, Prokai L, Awasthi S, et al. 2-Hydroxyflavanone inhibits proliferation, tumor vascularization and promotes normal differentiation in VHL-mutant renal cell carcinoma. Carcinogenesis. 2011;32:568.

    Article  PubMed  CAS  Google Scholar 

  14. Cowey CL, Rathmell WK. Using molecular biology to develop drugs renal cell carcinoma. Expert Opin Drug Discov. 2008;3:311–27.

    Article  PubMed  CAS  Google Scholar 

  15. Kaelin WG. The Von Hippel–Lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res. 2007;13:680s.

    Article  PubMed  CAS  Google Scholar 

  16. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Eng J Med. 2007;356:115.

    Article  CAS  Google Scholar 

  17. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Eng J Med. 2007;356:125.

    Article  CAS  Google Scholar 

  18. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271–81.

    Article  PubMed  CAS  Google Scholar 

  19. Maher ER, Neumann HPH, Richard S. Von Hippel–Lindau disease: a clinical and scientific review. Eur J Hum Genet. 2011;19:617–23.

    Article  PubMed  CAS  Google Scholar 

  20. Maynard MA, Ohh M. Von Hippel–Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer. Am J Nephrol. 2000;24:1–13.

    Article  Google Scholar 

  21. Collins ET. Intra-ocular growths (two cases, brother and sister, with peculiar vascular new growth, probably retinal, affecting both eyes). Trans Ophthal Soc UK. 1894;14:141–9.

    Google Scholar 

  22. Ev H. Ueber eine sehr seltene erkrankung der nethaut. Albrecht von Graef Arch Ophthalmol. 1904;59:83–106.

    Article  Google Scholar 

  23. Couch V, Lindor NM, Karnes PS, Michels VV. Von Hippel–Lindau disease. Mayo Clin. 2000;75:265.

    Article  CAS  Google Scholar 

  24. Kim WY, Kaelin WG. Role of VHL gene mutation in human cancer. J Clin Oncol. 2004;22:4991.

    Article  PubMed  CAS  Google Scholar 

  25. Cowey CL, Rathmell WK. VHL gene mutations in renal cell carcinoma: role as a biomarker of disease outcome and drug efficacy. Curr Oncol Rep. 2009;11:94–101.

    Article  PubMed  CAS  Google Scholar 

  26. McNeill A, Rattenberry E, Barber R, Killick P, MacDonald F, Maher ER. Genotype–phenotype correlations in vhl exon deletions. Am J Med Genet A. 2009;149:2147–51.

    Google Scholar 

  27. Stolle C, Glenn G, Zbar B, Humphrey JS, Choyke P, Walther MC, et al. Improved detection of germline mutations in the Von Hippel–Lindau disease tumor suppressor gene. Hum Mutat. 1998;12:417–23.

    Article  PubMed  CAS  Google Scholar 

  28. Linehan WM, Bratslavsky G, Pinto PA, Schmidt LS, Neckers L, Bottaro D, et al. Molecular diagnosis and therapy of kidney cancer. Annu Rev Med. 2010;61:329.

    Article  PubMed  CAS  Google Scholar 

  29. Wind JJ, Lonser RR. Management of Von Hippel–Lindau disease-associated CNS lesions. Expert Rev Neurother. 2011;11:1433–41.

    Article  PubMed  Google Scholar 

  30. Bhattacharjee H, Deka H, Deka S, Barman MJ, Mazumdar M, Medhi J. Verteporfin photodynamic therapy of retinal capillary hemangioblastoma in Von Hippel–Lindau disease. Indian J Ophthalmol. 2010;58:73.

    Article  PubMed  Google Scholar 

  31. Hammel PR, Vilgrain V, Terris B, Penfornis A, Sauvanet A, Correas JM, et al. Pancreatic involvement in Von Hippel–Lindau disease. Gastroenterology. 2000;119:1087–95.

    Article  PubMed  CAS  Google Scholar 

  32. Schimke RN, Collins DL, Rothberg PG. Functioning carotid paraganglioma in the Von Hippel–Lindau syndrome. Am J Med Genet. 1998;80:533–4.

    Article  PubMed  CAS  Google Scholar 

  33. Matin SF, Ahrar K, Wood CG, Daniels M, Jonasch E. Patterns of intervention for renal lesions in Von Hippel–Lindau disease. BJU Int. 2008;102:940–5.

    Article  PubMed  Google Scholar 

  34. Young AC, Craven RA, Cohen D, Taylor C, Booth C, Harnden P, et al. Analysis of vhl gene alterations and their relationship to clinical parameters in sporadic conventional renal cell carcinoma. Clin Cancer Res. 2009;15:7582.

    Article  PubMed  CAS  Google Scholar 

  35. Kondo K, Yao M, Yoshida M, Kishida T, Shuin T, Miura T, et al. Comprehensive mutational analysis of the vhl gene in sporadic renal cell carcinoma: relationship to clinicopathological parameters. Genes Chromosome Canc. 2002;34:58–68.

    Article  CAS  Google Scholar 

  36. Yuen JSP. Molecular targeted therapy in advanced renal cell carcinoma: a review of its recent past and a glimpse into the near future. Indian J Urol. 2009;25:427.

    Article  PubMed  Google Scholar 

  37. Ivan M, KaelinJr WG. The Von Hippel–Lindau tumor suppressor protein. Curr Opin Genet Dev. 2001;11:27–34.

    Article  PubMed  CAS  Google Scholar 

  38. Hergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W. Regulation of microtubule stability by the Von Hippel–Lindau tumour suppressor protein pvhl. Nat Cell Biol. 2003;5:64–70.

    Article  PubMed  CAS  Google Scholar 

  39. Okuda H, Hirai S, Takaki Y, Kamada M, Baba M, Sakai N, et al. Direct interaction of the [beta]-domain of VHL tumor suppressor protein with the regulatory domain of atypical pkc isotypes. Biochem Biophys Res Commun. 1999;263:491–7.

    Article  PubMed  CAS  Google Scholar 

  40. Kamura T, Conrad MN, Yan Q, Conaway RC, Conaway JW. The rbx1 subunit of scf and VHL e3 ubiquitin ligase activates rub1 modification of cullins cdc53 and cul2. Genes Dev. 1999;13:2928.

    Article  PubMed  CAS  Google Scholar 

  41. Sumara I, Maerki S, Peter M. E3 ubiquitin ligases and mitosis: embracing the complexity. Trends Cell Biol. 2008;18:84–94.

    Article  PubMed  CAS  Google Scholar 

  42. Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, et al. Hypoxia inducible factor- binding and ubiquitylation by the Von Hippel–Lindau tumor suppressor protein. J Biol Chem. 2000;275:25733.

    Article  PubMed  CAS  Google Scholar 

  43. Zbar B: VHL family alliance. Basic facts about VHL Accessed 25 Feb 2011.

  44. Pause A, Lee S, Lonergan KM, Klausner RD. The Von Hippel–Lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawal. Proc Natl Acad Sci. 1998;95:993.

    Article  PubMed  CAS  Google Scholar 

  45. Ohh M, Yauch RL, Lonergan KM, Whaley JM, Stemmer-Rachamimov AO, Louis DN, et al. The Von Hippel–Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell. 1998;1:959–68.

    Article  PubMed  CAS  Google Scholar 

  46. Frew IJ, Krek W. Multitasking by pVHL in tumour suppression. Curr Opin Cell Biol. 2007;19:685–90.

    Article  PubMed  CAS  Google Scholar 

  47. Roe JS, Youn HD. Extra view the positive regulation of p53 by the tumor suppressor VHL. Cell Cycle. 2006;5:2054–6.

    Article  PubMed  CAS  Google Scholar 

  48. Clifford SC, Cockman ME, Smallwood AC, Mole DR, Woodward ER, Maxwell PH, et al. Contrasting effects on hif-1 regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in Von Hippel–Lindau disease. Hum Mol Genet. 2001;10:1029.

    Article  PubMed  CAS  Google Scholar 

  49. Hoffman MA, Ohh M, Yang H, Klco JM, Ivan M, Kaelin Jr WG. Von Hippel–Lindau protein mutants linked to type 2c VHL disease preserve the ability to downregulate hif. Hum Mol Genet. 2001;10:1019.

    Article  PubMed  CAS  Google Scholar 

  50. Lieubeau-Teillet B, Rak J, Jothy S, Iliopoulos O, Kaelin W, Kerbel RS. Von Hippel–Lindau gene-mediated growth suppression and induction of differentiation in renal cell carcinoma cells grown as multicellular tumor spheroids. Cancer Res. 1998;58:4957.

    PubMed  CAS  Google Scholar 

  51. Davidowitz EJ, Schoenfeld AR, Burk RD. VHL induces renal cell differentiation and growth arrest through integration of cell–cell and cell–extracellular matrix signaling. Mol Cell Biol. 2001;21:865.

    Article  PubMed  CAS  Google Scholar 

  52. Stickle NH, Chung J, Klco JM, Hill RP, Kaelin Jr WG, Ohh M. PVHL modification by nedd8 is required for fibronectin matrix assembly and suppression of tumor development. Mol Cell Biol. 2004;24:3251.

    Article  PubMed  CAS  Google Scholar 

  53. Kaelin Jr WG. Von Hippel–Lindau disease. Annu Rev Pathol Mech Dis. 2007;2:145–73.

    Article  CAS  Google Scholar 

  54. To KKW, Huang LE. Suppression of hypoxia-inducible factor 1 (HIF-1) transcriptional activity by the HIF prolyl hydroxylase EGLN1. J Biol Chem. 2005;280:38102.

    Article  PubMed  CAS  Google Scholar 

  55. Berra E, Benizri E, Ginouvès A, Volmat V, Roux D, Pouysségur J. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1 in normoxia. EMBO J. 2003;22:4082–90.

    Article  PubMed  CAS  Google Scholar 

  56. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 2004;279:38458.

    Article  PubMed  CAS  Google Scholar 

  57. Marxsen JH, Stengel P, Doege K, Heikkinen P, Jokilehto T, Wagner T, et al. Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases. Biochem J. 2004;381:761.

    Article  PubMed  CAS  Google Scholar 

  58. Aprelikova O, Chandramouli GVR, Wood M, Vasselli JR, Riss J, Maranchie JK, et al. Regulation of HIF prolyl hydroxylases by hypoxia inducible factors. J Cell Biochem. 2004;92:491–501.

    Article  PubMed  CAS  Google Scholar 

  59. Haase VH. Hypoxia-inducible factors in the kidney. Am J Physiol Renal Physiol. 2006;291:F271.

    Article  PubMed  CAS  Google Scholar 

  60. Kleymenova E, Everitt JI, Pluta L, Portis M, Gnarra JR, Walker CL. Susceptibility to vascular neoplasms but no increased susceptibility to renal carcinogenesis in VHL knockout mice. Carcinogenesis. 2004;25:309.

    Article  PubMed  CAS  Google Scholar 

  61. Haase VH, Glickman JN, Socolovsky M, Jaenisch R. Vascular tumors in livers with targeted inactivation of the Von Hippel–Lindau tumor suppressor. Proc Natl Acad Sci. 2001;98:1583.

    Article  PubMed  CAS  Google Scholar 

  62. Chen L, Uchida K, Endler A, Shibasaki F. Mammalian tumor suppressor int6 specifically targets hypoxia inducible factor 2 for degradation by hypoxia-and pVHL-independent regulation. J Biol Chem. 2007;282:12707.

    Article  PubMed  CAS  Google Scholar 

  63. Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin Jr WG. Inhibition of HIF is necessary for tumor suppression by the Von Hippel–Lindau protein. Cancer Cell. 2002;1:237–46.

    Article  PubMed  CAS  Google Scholar 

  64. Li L, Lin X, Shoemaker AR, Albert DH, Fesik SW, Shen Y. Hypoxia-inducible factor-1 inhibition in combination with temozolomide treatment exhibits robust antitumor efficacy in vivo. Clin Cancer Res. 2006;12:4747.

    Article  PubMed  CAS  Google Scholar 

  65. Wang R, Zhou S, Li S. Cancer therapeutic agents targeting hypoxia-inducible factor-1. Curr Med Chem. 2011;18:3168–89.

    Article  PubMed  CAS  Google Scholar 

  66. Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin Jr WG. TSC2 regulates VEGF through mTOR-dependent and-independent pathways. Cancer Cell. 2003;4:147–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to the Indian Council of Medical Research, New Delhi, India, for providing funds.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarwat Sultana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arjumand, W., Sultana, S. Role of VHL gene mutation in human renal cell carcinoma. Tumor Biol. 33, 9–16 (2012). https://doi.org/10.1007/s13277-011-0257-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-011-0257-3

Keywords

Navigation