Skip to main content
Log in

Differential Games in \(L^{\infty }\)

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

The Isaacs equations for differential games in \({L^{\infty }}\) first derived in Barron (Nonlinear Anal 14:971–989, 1990) are reformulated so that the Hamiltonians are continuous and result in a simpler problem to analyze numerically. Relaxed differential games in \({L^{\infty }}\) are considered. \(L^{\infty }\) differential games with time and state independent dynamics and convex or quasiconvex terminal data are solved explicitly using a type of Hopf–Lax formula. The stochastic differential game in \({L^{\infty }}\) connected to stochastic target problems is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Precisely, G is quasiconvex if \(E_\alpha =\{x\;|\; G(x) \le \alpha \}\) is convex for all \(\alpha \). Equivalently, \(G(\lambda \,x+(1-\lambda )y) \le G(x) \vee G(y),\) for all \(x,y \in {{\mathbb {R}}}^n, 0 \le \lambda \le 1\).

  2. \(G^*(p)=\sup _x p\cdot x-G(x)\) is the Fenchel conjugate of G.

References

  1. Alvarez O, Barron EN, Ishii H (1999) Hopf–Lax formulas for semicontinuous data. Indiana Univ Math J 48:993–1035

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardi M, Capuzzo-Dolcetta I (1997) Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. Birkhäuser Boston Inc., Boston

  3. Bardi M, Evans LC (1984) On Hopf’s formula for solutions of Hamilton–Jacobi equations. Nonlinear Anal 8:1373–1381

    Article  MathSciNet  MATH  Google Scholar 

  4. Barron EN (1990) Differential games with maximum cost. Nonlinear Anal 14:971–989

    Article  MathSciNet  MATH  Google Scholar 

  5. Barron EN, Ishii H (1989) The Bellman equation for minimizing the maximum cost. Nonlinear Anal 13:1067–1090

    Article  MathSciNet  MATH  Google Scholar 

  6. Barron EN, Jensen R (1995) Relaxed minimax control. SIAM J Control Optim 33:1028–1039

    Article  MathSciNet  MATH  Google Scholar 

  7. Barron EN, Cardaliaguet P, Jensen R (2003) Conditional essential suprema with applications. Appl Math Optim 48:229–253

    Article  MathSciNet  MATH  Google Scholar 

  8. Barron EN, Liu W (1997) Calculus of variations in \(L^{\infty }\). Appl Math Optim 35:237–263

    MathSciNet  MATH  Google Scholar 

  9. Buckdahn R, Cardaliaguet P, Quincampoix M (2011) Some recent aspects of differential game theory. Dyn Games Appl 1:74–114

    Article  MathSciNet  MATH  Google Scholar 

  10. Buckdahn R, Li J (2008) Stochastic differential games and viscosity solutions of Hamilton–Jacobi–Isaacs equations. SIAM J Control Optim 47:444–475

    Article  MathSciNet  MATH  Google Scholar 

  11. Cardaliaguet P (2010) Introduction to differential games. https://www.ceremade.dauphine.fr/~cardalia/

  12. Cardaliaguet P, Rainer C (2013) Pathwise strategies for stochastic differential games with an erratum to stochastic differential games with asymmetric information. Appl Math Optim 68:75–84

    Article  MathSciNet  MATH  Google Scholar 

  13. Elliott R, Kalton N (1972) The existence of value in differential games, vol 126. Memoirs AMS, Providence

    MATH  Google Scholar 

  14. Van TD, Hoang N, Tsuji M (1997) On Hopf’s formula for Lipschitz solutions of the Cauchy problem for Hamilton–Jacobi equations. Nonlinear Anal 29:1145–1159

    Article  MathSciNet  MATH  Google Scholar 

  15. Van TD (2004) Hopf–Lax–Oleinik type formulas for viscosity solutions to some Hamilton–Jacobi equations. Vietnam J Math 32:241–275

    MathSciNet  MATH  Google Scholar 

  16. Krasovskii NN, Subbotin AI (1988) Game-theoretical control problems. Springer, New York

    Book  Google Scholar 

  17. Margellos K, Lygeros J (2011) Hamilton–Jacobi formulation for reach–avoid differential games. IEEE Trans Autom Control 56:1849–1861

    Article  MathSciNet  Google Scholar 

  18. Mitchell I, Bayen A, Tomlin C (2005) A time-dependent Hamilton–Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans Autom Control 50:947–957

    Article  MathSciNet  Google Scholar 

  19. Popier A. Contrôle stochastique optimal en essentiel-sup. Memoir DEA, Universite de Bretagne Occidentale. http://perso.univ-lemans.fr/~apopier/documents/rapportDEA

  20. Serea O-S (2002) Discontinuous differential games and control systems with supremum cost. J Math Anal Appl 270:519–542

    Article  MathSciNet  MATH  Google Scholar 

  21. Sion M (1958) On general minimax theorems. Pac J Math 8:17–176

    Article  MathSciNet  MATH  Google Scholar 

  22. Soner H, Touzi N (2002) A stochastic representation for the level set equations. Comm PDE 27:2031–2053

    Article  MathSciNet  MATH  Google Scholar 

  23. Subbotin AI (1995) Generalized solution of first-order PDEs. Birkhauser, Boston

    Book  Google Scholar 

Download references

Acknowledgments

I would like to thank the reviewers for a careful reading of the paper and for bringing several references to my attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Barron.

Additional information

The work was supported in part by a Grant NSF-DMS 1515871.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barron, E.N. Differential Games in \(L^{\infty }\) . Dyn Games Appl 7, 157–184 (2017). https://doi.org/10.1007/s13235-016-0183-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-016-0183-5

Keywords

Mathematics Subject Classification

Navigation