Skip to main content
Log in

Microwell-mediated micro cartilage-like tissue formation of adipose-derived stem cell

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In cartilage tissue engineering, various technical approaches using postnatal stem cells, three-dimensional (3D) scaffolds composed of synthetic or natural polymers, and culture systems have been applied to develop 3D cartilage-like tissue. In this study, scaffold-free 3D micro-cartilage-like tissue was developed via microwell-mediated cell spheroid formation and 3D dynamic chondrogenic culture in a bioreactor. First, homogenous micro-cell spheroids were generated by the self-condensation of adipose tissue-derived stem cells (ADSCs) in microfabricated poly(ethylene glycol) (PEG) hydrogel microwells. Next, chondrogenic differentiation of the micro-ADSC spheroids was induced in the presence of transforming growth factor-beta 3 under dynamic 3D culture conditions using a high aspect ratio vessel bioreactor. Several hundred viable ADSC spheroids could be generated at a time from ADSC culture in PEG microwells. The 3D dynamic chondrogenic culture of ADSCs in the bioreactor facilitated the chondrogenic mRNA expression of proteins such as sox-9, runx2, osterix, type II collagen, and aggrecan, and the well deposition of glycosaminoglycan and type II collagen, which finally generated micro-cartilage-like tissue. Therefore, the hydrogel microwell arrays could be useful for efficiently deriving initial cell condensation-mediated chondrogenic differentiation, and for developing 3D cell-based micro-cartilage-like tissue with stem cells in a controlled manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. K. Hambly, V. Bobic, B. Wondrasch, D. Van Assche, and S. Marlovits, Am. J. Sports Med., 34, 1020 (2006).

    Article  Google Scholar 

  2. A. Sterodimas, J. Faria, B. Nicaretta, and I. Pitanguy. J. Plast. Reconstr. Aesthet. Surg., 63, 1886 (2010).

    Article  Google Scholar 

  3. H. Park, J. S. Temenoff, Y. Tabata, A. I. Caplan, and A. G. Mikos, Biomaterials, 28, 3217 (2007).

    Article  CAS  Google Scholar 

  4. J. Fan, R. R. Varshney, L. Ren, D. Cai, and D. A. Wang. Tissue Eng. B: Rev., 15, 75 (2009).

    Article  CAS  Google Scholar 

  5. B. O. Diekman, C. R. Rowland, D. P. Lennon, A. I. Caplan, and F. Guilak, Tissue Eng. A, 16, 523 (2010).

    Article  CAS  Google Scholar 

  6. F. Veronesi, M. Maglio, M. Tschon, N. Aldini, and M. Fini, J. Biomed. Mater. Res. Part A, DOI: 10.1002/JBM.A.34896 (2013).

    Google Scholar 

  7. N. Zippel, M. Schulze, and E. Tobiasch, Recent Pat. Biotechnol., 4, 1 (2010).

    Article  CAS  Google Scholar 

  8. J. T. Oliveira, L. S. Gardel, T. Rada, L. Martins, M. E. Gomes, and R. L. Reis, J. Orthop. Res., 28, 1193 (2010).

    Article  CAS  Google Scholar 

  9. M. B. Goldring, K. Tsuchimochi, and K. Jiri, J. Cell Biochem., 97, 33 (2006).

    Article  CAS  Google Scholar 

  10. A. Winter, S. Breit, D. Parsch, K. Benz, E. Steck, H. Hauner, R. M. Weber, V. Ewerbeck, and W. Richter, Arthritis Rheumatism, 48, 418 (2003).

    Article  CAS  Google Scholar 

  11. B. Hashemibeni, S. Razavi, E. Esfandiary, S. Karbasi, M. Mardani, and M. Nasresfahani, Iran. J. Basic Med. Sci., 11, 10 (2008).

    CAS  Google Scholar 

  12. Y. S. Hwang, B. G. Chung, D. Ortmann, N. Hattori, H. C. Moeller, and A. Khademhossini, Proc. Natl. Acad. Sci., 106, 16978 (2009).

    Article  CAS  Google Scholar 

  13. F. D. Ceuninck, C. Lesur, P. Pastoureau, A. Caliez, and M. Sabatini, Methods Mol. Med., 100, 15 (2004).

    Google Scholar 

  14. N. S. Hwang, M. S. Kim, S. Sampattavanich, J. H. Baek, Z. Zhang, and J. Elisseeff, Stem Cells, 24, 284 (2006).

    Article  CAS  Google Scholar 

  15. A. R. Poole, T. Kojima, T. Yasuda, F. Mwale, M. Kobayashi, and S. Laverty, Clin. Orthop. Relat. Res., 391, S26 (2001).

    Article  Google Scholar 

  16. K. M. Kulyk, J. L. Franklin, and L. M. Hoffman, Exp. Cell Res., 255, 327 (2000).

    Article  CAS  Google Scholar 

  17. S. L. Ishaug-Riley, G. M. Crane-Kruger, M. J. Yaszemski, and A. G. Mikos, Biomaterials, 19, 1405 (1998).

    Article  CAS  Google Scholar 

  18. J. Glowacki, S. Mizuno, and J. S. Greenberger, Cell Transplant., 7, 319 (1998).

    Article  CAS  Google Scholar 

  19. C. E. Holy, M. S. Shoichet, and J. E. Davies, J. Biomed. Mater. Res., 51, 376 (2000).

    Article  CAS  Google Scholar 

  20. S. M. Mueller, S. Mizuno, L. C. Gerstenfeld, and J. Glowacki, J. Bone Miner. Res., 14, 2118 (1999).

    Article  CAS  Google Scholar 

  21. P. Allison. W. Van, I. D. Gates, and S. M. Kallos, Cells Tissues Organs, 196, 34 (2012).

    Article  Google Scholar 

  22. Y. S. Hwang, J. Cho, K. L. A. Chan, J. Heng, A. R. Boccacini, S. G. Kazarian, D. Williams, J. M. Polak, and A. Mantalaris, Biomaterials, 30, 499 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Seok Kim or Yu-Shik Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, BC., Kim, J.H., An, H.J. et al. Microwell-mediated micro cartilage-like tissue formation of adipose-derived stem cell. Macromol. Res. 22, 287–296 (2014). https://doi.org/10.1007/s13233-014-2044-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2044-7

Keywords

Navigation