Skip to main content

Advertisement

Log in

Unraveling the universe of small RNA regulators in the legume symbiont Sinorhizobium meliloti

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

High-throughput transcriptome profiling (RNAseq) has uncovered large and heterogeneous populations of small noncoding RNA species (sRNAs) with potential regulatory roles in bacteria. These sRNAs act mostly by protein-assisted base-pairing with target mRNAs to fine-tune post-transcriptional reprogramming of gene expression underlying bacterial responses to changing environments. Riboregulation impacts virtually any physiological process, and has been shown to largely influence virulence of pathogenic bacteria. Here, we review our current knowledge on the structure, conservation and function of the noncoding transcriptome of the α-rhizobia Sinorhizobium meliloti, the nitrogen-fixing symbiotic partner of alfalfa and related medics. Several RNAseq-based surveys in S. meliloti have shown abundant transcription from hitherto regarded as noncoding intergenic regions (IGRs), strikingly high numbers of mRNA-derived RNAs and pervasive antisense transcription of protein-coding genes. sRNAs encoded within IGRs constitute the most extensively studied group of bacterial riboregulators. They are differentially expressed and modulate translation and/or stability of trans-encoded target mRNAs by short antisense interactions that, in enteric model bacteria, are facilitated by the RNA chaperone Hfq. Among symbiotic rhizobia, regulatory sRNAs have been functionally characterized only in S. meliloti to date. The trans-sRNAs AbcR1 and AbcR2 are examples of Hfq-dependent sRNAs whereas EcpR1 does not bind Hfq. We will provide insights into the transcriptional regulation and activity mechanisms of these sRNAs for the targeting and control of multiple mRNAs involved in nutrient uptake (AbcR1/2) and cell cycle progression (EcpR1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altman S (2011) Ribonuclease P. Philos Trans R Soc B 366:2936–2941. doi:10.1098/rstb.2011.0142

    Article  CAS  Google Scholar 

  • Barnett MJ, Bittner AN, Toman CJ, Oke V, Long SR (2012) Dual RpoH sigma factors and transcriptional plasticity in a symbiotic bacterium. J Bacteriol 194:4983–4994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barra-Bily L, Fontenelle C, Jan G, Flechard M, Trautwetter A, Pandey SP, Walker GC, Blanco C (2010a) Proteomic alterations explain phenotypic changes in Sinorhizobium meliloti lacking the RNA chaperone Hfq. J Bacteriol 192:1719–1729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barra-Bily L, Pandey SP, Trautwetter A, Blanco C, Walker GC (2010b) The Sinorhizobium meliloti RNA chaperone Hfq mediates symbiosis of S. meliloti and alfalfa. J Bacteriol 192:1710–1718

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baumgardt K, Charoenpanich P, McIntosh M, Schikora A, Stein E, Thalmann S, Kogel K-H, Klug G, Becker A, Evguenieva-Hackenberg E (2014) RNase E affects the expression of the acyl-homoserine lactone synthase gene sinI in Sinorhizobium meliloti. J Bacteriol 196:1435–1447

    Article  PubMed Central  PubMed  Google Scholar 

  • Becker A, Overlöper A, Schlüter J-P, Reinkensmeier J, Robledo M, Giegerich R, Narberhaus F, Evguenieva-Hackenberg E (2014) Riboregulation in plant-associated α-proteobacteria. RNA Biol 11:550–562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caswell CC, Gaines JM, Ciborowski P, Smith D, Borchers CH, Roux CM, Sayood K, Dunman PM, Roop Ii RM (2012) Identification of two small regulatory RNAs linked to virulence in Brucella abortus 2308. Mol Microbiol 85:345–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cavanagh AT, Wassarman KM (2014) 6S RNA, a global regulator of transcription in Escherichia coli, Bacillus subtilis, and beyond. Annu Rev Microbiol 68:45–60

    Article  CAS  PubMed  Google Scholar 

  • Curtis PD, Brun YV (2010) Getting in the loop: regulation of development in Caulobacter crescentus. Microbiol Mol Biol Rev 74:13–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • del Val C, Rivas E, Torres-Quesada O, Toro N, Jiménez-Zurdo JI (2007) Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics. Mol Microbiol 66:1080–1091

    Article  PubMed Central  PubMed  Google Scholar 

  • del Val C, Romero-Zaliz R, Torres-Quesada O, Peregrina A, Toro N, Jiménez-Zurdo JI (2012) A survey of sRNA families in α-proteobacteria. RNA Biol 9:119–129

    Article  PubMed Central  PubMed  Google Scholar 

  • Dombrecht B, Marchal K, Vanderleyden J, Michelis J (2002) Prediction and overview of the RpoN-regulon in closely related species of the Rhizobiales. Genome Biol 3:RESEARCH0076

    Article  PubMed Central  PubMed  Google Scholar 

  • Drepper T, Raabe K, Giaourakis D, Gendrullis M, Masepohl B, Klipp W (2002) The Hfq-like protein NrfA of the phototrophic purple bacterium Rhodobacter capsulatus controls nitrogen fixation via regulation of nifA and anfA expression. FEMS Microbiol Lett 215:221–227

    Article  CAS  PubMed  Google Scholar 

  • Ebeling S, Kündig C, Hennecke H (1991) Discovery of a rhizobial RNA that is essential for symbiotic root nodule development. J Bacteriol 173:6373–6382

    PubMed Central  CAS  PubMed  Google Scholar 

  • Egea PF, Stroud RM, Walter P (2005) Targeting proteins to membranes: structure of the signal recognition particle. Curr Opin Struct Biol 15:213–220

    Article  CAS  PubMed  Google Scholar 

  • Flechard M, Fontenelle C, Blanco C, Goude R, Ermel G, Trautwetter A (2010) RpoE2 of Sinorhizobium meliloti is necessary for trehalose synthesis and growth in hyperosmotic media. Microbiology 156:1708–1718

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich KS, Vogel J (2009) Activation of gene expression by small RNA. Curr Opin Microbiol 12:674–682

    Article  PubMed  Google Scholar 

  • Galardini M, Mengoni A, Brilli M, Pini F, Fioravanti A, Lucas S, Lapidus A, Cheng JF, Goodwin L, Pitluck S, Land M, Hauser L, Woyke T, Mikhailova N, Ivanova N, Daligault H, Bruce D, Detter C, Tapia R, Han C, Teshima H, Mocali S, Bazzicalupo M, Biondi EG (2011) Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti. BMC Genomics 12:235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Barnett MJ, Long SR, Teplitski M (2010) Role of the Sinorhizobium meliloti global regulator Hfq in gene regulation and symbiosis. Mol Plant Microbe Interact 23:355–365

    Article  CAS  PubMed  Google Scholar 

  • Gibson KE, Kobayashi H, Walker GC (2008) Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 42:413–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramírez MA, Jiménez-Jacinto V, Collado-Vides J, Dávila G (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci U S A 103:3834–3839

    Article  PubMed Central  PubMed  Google Scholar 

  • Gottesman S, Storz G (2011) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 3. doi: 10.1101/cshperspect.a003798

  • Jacob AI, Köhrer C, Davies BW, Rajbhandary UL, Walker GC (2013) Conserved bacterial RNase YbeY plays key roles in 70S ribosome quality control and 16S rRNA maturation. Mol Cell 49:427–438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiménez-Zurdo JI, Valverde C, Becker A (2013) Insights into the noncoding RNome of nitrogen-fixing endosymbiotic α-proteobacteria. Mol Plant Microbe Interact 26:160–167

    Article  PubMed  Google Scholar 

  • Jonas K (2014) To divide or not to divide: control of the bacterial cell cycle by environmental cues. Curr Opin Microbiol 18:54–60

    Article  CAS  PubMed  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaminski PA, Elmerich C (1998) The control of Azorhizobium caulinodans nifA expression by oxygen, ammonia and by the HF-I-like protein, NrfA. Mol Microbiol 28:603–613

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K et al (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    Article  PubMed  Google Scholar 

  • Krol E, Becker A (2011) ppGpp in Sinorhizobium meliloti: biosynthesis in response to sudden nutritional downshifts and modulation of the transcriptome. Mol Microbiol 81:1233–1254

    Article  CAS  PubMed  Google Scholar 

  • Lasa I, Toledo-Arana A, Gingeras TR (2012) An effort to make sense of antisense transcription in bacteria. RNA Biol 9:1039–1044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee K, Huang X, Yang C, Lee D, Ho V, Nobuta K, Fan J-B, Wang K (2013) A genome-wide survey of highly expressed non-coding RNAs and biological validation of selected candidates in Agrobacterium tumefaciens. PLoS One 8:e70720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • MacLellan SR, Smallbone LA, Sibley CD, Finan TM (2005) The expression of a novel antisense gene mediates incompatibility within the large repABC family of α-proteobacterial plasmids. Mol Microbiol 55:611–623

    Article  CAS  PubMed  Google Scholar 

  • Madhugiri R, Pessi G, Voss B, Hahn J, Sharma CM, Reinhardt R, Vogel J, Hess WR, Fischer H-M, Evguenieva-Hackenberg E (2012) Small RNAs of the Bradyrhizobium/Rhodopseudomonas lineage and their analysis. RNA Biol 9:47–58

    Article  CAS  PubMed  Google Scholar 

  • Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AHF, Poole PS, Finan TM (2006) Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci U S A 103:17933–17938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McIntosh M, Meyer S, Becker A (2009) Novel Sinorhizobium meliloti quorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability. Mol Microbiol 74:1238–1256

    Article  CAS  PubMed  Google Scholar 

  • Moore SD, Sauer RT (2007) The tmRNA system for translational surveillance and ribosome rescue. Annu Rev Biochem 76:101–124

    Article  CAS  PubMed  Google Scholar 

  • Oke V, Rushing BG, Fisher EJ, Moghadam-Tabrizi M, Long SR (2001) Identification of the heat-shock sigma factor RpoH and a second RpoH-like protein in Sinorhizobium meliloti. Microbiology 147:2399–2408

    Article  CAS  PubMed  Google Scholar 

  • Ono Y, Mitsui H, Sato T, Minamisawa K (2001) Two RpoH homologs responsible for the expression of heat shock protein genes in Sinorhizobium meliloti. Mol Gen Genet 264:902–912

    Article  CAS  PubMed  Google Scholar 

  • Overlöper A, Kraus A, Gurski R, Wright PR, Georg J, Hess WR, Narberhaus F (2014) Two separate modules of the conserved regulatory RNA AbcR1 address multiple target mRNAs in and outside of the translation initiation region. RNA Biol 11:624–640

    Article  PubMed Central  PubMed  Google Scholar 

  • Pandey SP, Minesinger BK, Kumar J, Walker GC (2011) A highly conserved protein of unknown function in Sinorhizobium meliloti affects sRNA regulation similar to Hfq. Nucleic Acids Res 39:4691–4708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pandey SP, Winkler JA, Li H, Camacho DM, Collins JJ, Walker GC (2014) Central role for RNase YbeY in Hfq-dependent and Hfq-independent small-RNA regulation in bacteria. BMC Genomics 15:121

    Article  PubMed Central  PubMed  Google Scholar 

  • Papenfort K, Vogel J (2010) Regulatory RNA in bacterial pathogens. Cell Host Microbe 8:116–127

    Article  CAS  PubMed  Google Scholar 

  • Reinkensmeier J, Schlüter J-P, Giegerich R, Becker A (2011) Conservation and occurrence of trans-encoded sRNAs in the Rhizobiales. Genes 2:925–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robledo M, Frage B, Wright PR, Becker A (2015a) A stress-induced small RNA modulates alpha-rhizobial cell cycle progression. PLoS Genet 11:e1005153

    Article  PubMed Central  PubMed  Google Scholar 

  • Robledo M, Jiménez-Zurdo JI, Becker A (2015b) Antisense transcription of symbiotic genes in Sinorhizobium meliloti. Symbiosis. Under revision

  • Roop RM, Robertson GT, Ferguson GP, Milford LE, Winkler ME, Walker GC (2002) Seeking a niche: putative contributions of the hfq and bacA gene products to the successful adaptation of the brucellae to their intracellular home. Vet Microbiol 90:349–363

    Article  CAS  PubMed  Google Scholar 

  • Roux B, Rodde N, Jardinaud M-F, Timmers T, Sauviac L, Cottret L, Carrère S, Sallet E, Courcelle E, Moreau S, Debellé F, Capela D, de Carvalho-Niebel F, Gouzy J, Bruand C, Gamas P (2014) An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J 77:817–837

    Article  CAS  PubMed  Google Scholar 

  • Sallet E, Roux B, Sauviac L, M-Fo J, Carrère S, Faraut T, de Carvalho-Niebel F, Gouzy J, Gamas P, Capela D, Bruand C, Schiex T (2013) Next-Generation annotation of prokaryotic genomes with EuGene-P: application to Sinorhizobium meliloti 2011. DNA Res 20:339–354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sauviac L, Philippe H, Phok K, Bruand C (2007) An extracytoplasmic function sigma factor acts as a general stress response regulator in Sinorhizobium meliloti. J Bacteriol 189:4204–4216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schlüter JP, Reinkensmeier J, Daschkey S, Evguenieva-Hackenberg E, Janssen S, Janicke S, Becker JD, Giegerich R, Becker A (2010) A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti. BMC Genomics 11:245

    Article  PubMed Central  PubMed  Google Scholar 

  • Schlüter JP, Reinkensmeier J, Barnett MJ, Lang C, Krol E, Giegerich R, Long SR, Becker A (2013) Global mapping of transcription start sites and promoter motifs in the symbiotic alpha-proteobacterium Sinorhizobium meliloti 1021. BMC Genomics 14:156

    Article  PubMed Central  PubMed  Google Scholar 

  • Schneiker-Bekel S, Wibberg D, Bekel T, Blom J, Linke B, Neuweger H, Stiens M, Vorholter FJ, Weidner S, Goesmann A, Puhler A, Schluter A (2011) The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome. J Biotechnol 155:20–33

    Article  CAS  PubMed  Google Scholar 

  • Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152:17–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma CM, Papenfort K, Pernitzsch SR, Mollenkopf H-J, Hinton JCD, Vogel J (2011) Pervasive post-transcriptional control of genes involved in amino acid metabolism by the Hfq-dependent GcvB small RNA. Mol Microbiol 81:1144–1165

    Article  CAS  PubMed  Google Scholar 

  • Sobrero P, Valverde C (2011) Evidences of autoregulation of hfq expression in Sinorhizobium meliloti strain 2011. Arch Microbiol 1–11

  • Sobrero P, Valverde C (2012) The bacterial protein Hfq: much more than a mere RNA-binding factor. Crit Rev Microbiol 38:276–299

    Article  CAS  PubMed  Google Scholar 

  • Sobrero P, Schluter JP, Lanner U, Schlosser A, Becker A, Valverde C (2012) Quantitative proteomic analysis of the Hfq-regulon in Sinorhizobium meliloti 2011. PLoS One 7:e48494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sorek R, Cossart P (2010) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11:9–16

    Article  CAS  PubMed  Google Scholar 

  • Storz G (2002) An expanding universe of noncoding RNAs. Science 296:1260–1263

    Article  CAS  PubMed  Google Scholar 

  • Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43:880–891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torres-Quesada O, Oruezabal RI, Peregrina A, Jofre E, Lloret J, Rivilla R, Toro N, Jimenez-Zurdo JI (2010) The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa. BMC Microbiol 10:71

    Article  PubMed Central  PubMed  Google Scholar 

  • Torres-Quesada O, Millán V, Nisa-Martínez R, Bardou F, Crespi M, Toro N, Jiménez-Zurdo JI (2013) Independent activity of the homologous small regulatory RNAs AbcR1 and AbcR2 in the legume symbiont Sinorhizobium meliloti. PLoS One 8:e68147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torres-Quesada O, Reinkensmeier J, Schlüter J-P, Robledo M, Peregrina A, Giegerich R, Toro N, Becker A, Jiménez-Zurdo JI (2014) Genome-wide profiling of Hfq-binding RNAs uncovers extensive post-transcriptional rewiring of major stress response and symbiotic regulons in Sinorhizobium meliloti. RNA Biol 11:563–579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsokos CG, Laub MT (2012) Polarity and cell fate asymmetry in Caulobacter crescentus. Curr Opin Microbiol 15:744–750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ulve VM, Sevin EW, Cheron A, Barloy-Hubler F (2007) Identification of chromosomal alpha-proteobacterial small RNAs by comparative genome analysis and detection in Sinorhizobium meliloti strain 1021. BMC Genomics 8:467

    Article  PubMed Central  PubMed  Google Scholar 

  • Urban JH, Vogel J (2007) Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res 35:1018–1037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valverde C, Livny J, Schluter JP, Reinkensmeier J, Becker A, Parisi G (2008) Prediction of Sinorhizobium meliloti sRNA genes and experimental detection in strain 2011. BMC Genomics 9:416

    Article  PubMed Central  PubMed  Google Scholar 

  • Vercruysse M, Fauvart M, Cloots L, Engelen K, Thijs IM, Marchal K, Michiels J (2010) Genome-wide detection of predicted non-coding RNAs in Rhizobium etli expressed during free-living and host-associated growth using a high-resolution tiling array. BMC Genomics 11:53

    Article  PubMed Central  PubMed  Google Scholar 

  • Vogel J, Luisi BF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9:578–589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vogel J, Wagner EG (2007) Target identification of small noncoding RNAs in bacteria. Curr Opin Microbiol 10:262–270

    Article  CAS  PubMed  Google Scholar 

  • Voss B, Holscher M, Baumgarth B, Kalbfleisch A, Kaya C, Hess WR, Becker A, Evguenieva-Hackenberg E (2009) Expression of small RNAs in Rhizobiales and protection of a small RNA and its degradation products by Hfq in Sinorhizobium meliloti. Biochem Biophys Res Commun 390:331–336

    Article  CAS  PubMed  Google Scholar 

  • Wagner EG (2013) Cycling of RNAs on Hfq. RNA Biol 10:619–626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wagner EG, Simons RW (1994) Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol 48:713–742

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilms I, Voss B, Hess WR, Leichert LI, Narberhaus F (2011) Small RNA-mediated control of the Agrobacterium tumefaciens GABA binding protein. Mol Microbiol 80(2):492–506

    Article  CAS  PubMed  Google Scholar 

  • Wilms I, Moller P, Stock AM, Gurski R, Lai EM, Narberhaus F (2012a) Hfq influences multiple transport systems and virulence in the plant pathogen Agrobacterium tumefaciens. J Bacteriol 194:5209–5217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilms I, Overloper A, Nowrousian M, Sharma CM, Narberhaus F (2012b) Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens. RNA Biol 9:446–457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilusz CJ, Wilusz J (2005) Eukaryotic Lsm proteins: lessons from bacteria. Nat Struct Mol Biol 12:1031–1036

    Article  CAS  PubMed  Google Scholar 

  • Wright PR, Richter AS, Papenfort K, Mann M, Vogel J, Hess WR, Backofen R, Georg J (2013) Comparative genomics boosts target prediction for bacterial small RNAs. Proc Natl Acad Sci 110:E3487–E3496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young JP, Crossman L, Johnston A, Thomson N, Ghazoui Z, Hull K, Wexler M, Curson A, Todd J, Poole P, Mauchline T, East A, Quail M, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Hong G (2009) Post-transcriptional regulation of NifA expression by Hfq and RNase E complex in Rhizobium leguminosarum bv. viciae. Acta Biochim Biophys Sin (Shanghai) 41:719–730

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work at the laboratory of José I. Jiménez-Zurdo is currently funded by ERDF-cofinanced grants CSD2009-00006 and BFU2013-48282-C2-2-P from the Spanish Ministerio de Economía y Competitividad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José I. Jiménez-Zurdo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Zurdo, J.I., Robledo, M. Unraveling the universe of small RNA regulators in the legume symbiont Sinorhizobium meliloti . Symbiosis 67, 43–54 (2015). https://doi.org/10.1007/s13199-015-0345-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-015-0345-z

Keywords

Navigation