Skip to main content
Log in

Mathematical analysis of fluids in motion: from well-posedness to model reduction

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

This paper reviews some recent results on the Navier-Stokes-Fourier system governing the evolution of a general compressible, viscous, and heat conducting fluid. We discuss several concepts of weak solutions, in particular, using the implications of the Second law of thermodynamics. We introduce the concept of relative entropy and dissipative solution and show the principle of weak-strong uniqueness. The second part of the paper is devoted to problems of model reduction and the related singular limits. Several examples of singular limits are presented: The incompressible limit, the inviscid limit, the low Rossby number limit and their combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babin, A., Mahalov, A., Nicolaenko, B.: Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Indiana Univ. Math. J. 48, 1133–1176 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Babin, A., Mahalov, A., Nicolaenko, B.: 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity. Indiana Univ. Math. J. 50 (Special Issue), 1–35 (2001)

  3. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    MATH  Google Scholar 

  4. Bechtel, S.E., Rooney, F.J., Forest, M.G.: Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fuids. J. Appl. Mech. 72, 299–300 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bechtel, S.E., Rooney, Q., Wang, F.J.: A thermodynamic definition of pressure for incompressible viscous fluids. Int. J. Eng. Sci. 42, 1987–1994 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bella, P., Feireisl, E., Pražák, D.: Long time behavior and stabilization to equilibria of solutions to the Navier-Stokes-Fourier system driven by highly oscillating unbounded external forces. J. Dyn. Differ. Equ. (2013) (to appear)

  7. Bulíček, M., Málek, J., Rajagopal, K.R.: Navier’s slip and evolutionary Navier-Stokes-like systems with pressure and shear- rate dependent viscosity. Indiana Univ. Math. J. 56, 51–86 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L., Kohn, R.V., Nirenberg, L.: On the regularity of the solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Callen, H.: Thermodynamics and an Introduction to Thermostatistics. Wiley, New York (1985)

    MATH  Google Scholar 

  10. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical Geophysics, volume 32 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, Oxford (2006)

  11. Cheskidov, A., Friedlander, S., Shvydkoy, R.: On the energy equality for weak solutions of the 3D Navier-Stokes equations. In: Advances in Mathematical Fluid Mechanics, pp. 171–175. Springer, Berlin (2010)

  12. Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics. Springer, New York (1979)

    Book  MATH  Google Scholar 

  13. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators: With Applications to Quantum Mechanics and Global Geometry. Texts and monographs in physics, Springer, Berlin (1987)

  14. Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70, 167–179 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. De Lellis, C., Székelyhidi, L. Jr.: The \(h\)-principle and the equations of fluid dynamics. Bull. Am. Math. Soc. (N.S.), 49(3), 347–375 (2012)

  16. Desjardins, B., Grenier, E.: Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455(1986), 2271–2279 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Desjardins, B., Grenier, E., Lions, P.-L., Masmoudi, N.: Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78, 461–471 (1999)

    MathSciNet  Google Scholar 

  18. Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity 13, 249–255 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ducomet, B., Feireisl, E.: On the dynamics of gaseous stars. Arch. Rational Mech. Anal. 174, 221–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eliezer, S., Ghatak, A., Hora, H.: An Introduction to Equations of States, Theory and Applications. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  21. Ericksen, J.L.: Introduction to the Thermodynamics of Solids. Applied Mathematical Sciences, revised edn, vol. 131, Springer, New York (1998)

  22. Fefferman, C.L.: Existence and smoothness of the Navier-Stokes equation. In: The Millennium Prize Problems, pp. 57–67. Clay Math. Inst., Cambridge (2006)

  23. Feireisl, E.: Local decay of acoustic waves in the low Mach number limits on general unbounded domains under slip boundary conditions. Commun. Partial Differ. Equ. (2010) (submitted)

  24. Feireisl, E., Gallagher, I., Gerard-Varet, D., Novotný, A.: Multi-scale analysis of compressible viscous and rotating fluids. Commun. Math. Phys. 314, 641–670 (2012)

    Article  MATH  Google Scholar 

  25. Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Birkhäuser-Verlag, Basel (2009)

    Book  MATH  Google Scholar 

  26. Feireisl, E., Novotný, A.: Inviscid incompressible limits of the full Navier-Stokes-Fourier system. Commun. Math. Phys. (2012) (to appear)

  27. Feireisl, E., Novotný, A.: Weak-strong uniqueness property for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 204, 683–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Feireisl, E., Novotný, A., Sun, Y.: A regularity criterion for the weak solutions to the Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. (2012) (submitted)

  29. Feireisl, E., Pražák, D.: A stabilizing effect of a high frequency driving force on the motion of a viscous, compressible, and heat conducting fluid. Discr. Cont. Dyn. Syst. Ser. S. 2, 95–111 (2009)

    Google Scholar 

  30. Feireisl, E., Pražák, D.: Asymptotic Behavior of Dynamical Systems in Fluid Mechanics. AIMS, Springfield (2010)

    MATH  Google Scholar 

  31. Feireisl, E., Schonbek, M.E.: On the Oberbeck-Boussinesq approximation on unbounded domains. In: Abel Symposium Lecture Notes. Springer, Berlin (2011)

  32. Gallavotti, G.: Foundations of Fluid Dynamics. Springer, New York (2002)

    Book  Google Scholar 

  33. Golse, F.: The Boltzmann equation and its hydrodynamic limits. In: Evolutionary Equations. Vol. II. Handb. Differ. Equ., pp. 159–301. Elsevier/North-Holland, Amsterdam (2005)

  34. Hesla, T.I.: Collision of Smooth Bodies in a Viscous Fluid: A Mathematical Investigation. PhD Thesis Minnesota (2005)

  35. Hillairet, M.: Lack of collision between solid bodies in a 2D incompressible viscous flow. Commun. Partial Differ. Equ. 32(7–9), 1345–1371 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hillairet, M., Takahashi, T.: Collisions in three-dimensional fluid structure interaction problems. SIAM J. Math. Anal. 40(6), 2451–2477 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hoff, D.: Dynamics of singularity surfaces for compressible viscous flows in two space dimensions. Commun. Pure Appl. Math. 55, 1365–1407 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hoff, D., Santos, M.M.: Lagrangean structure and propagation of singularities in multidimensional compressible flow. Arch. Ration. Mech. Anal. 188(3), 509–543 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jesslé, D., Jin, B.J., Novotný, A.: Navier-Stokes-Fourier system on unbounded domains: weak solutions, relative entropies, weak-strong uniqueness (2012) (preprint)

  40. Kato, T.: Remarks on the zero viscosity limit for nonstationary Navier-Stokes flows with boundary. In: Chern, S.S. (ed.) Seminar on PDE’s. Springer, New York (1984)

    Google Scholar 

  41. Kato, T., Lai, C.Y.: Nonlinear evolution equations and the Euler flow. J. Funct. Anal. 56, 15–28 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  42. Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  43. Klein, R.: Asymptotic analyses for atmospheric flows and the construction of asymptotically adaptive numerical methods. Z. Angw. Math. Mech. 80, 765–777 (2000)

    Article  MATH  Google Scholar 

  44. Klein, R.: Multiple spatial scales in engineering and atmospheric low Mach number flows. ESAIM Math. Mod. Numer. Anal. 39, 537–559 (2005)

    Google Scholar 

  45. Klein, R., Botta, N., Schneider, T., Munz, C.D., Roller, S., Meister, A., Hoffmann, L., Sonar, T.: Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Eng. Math. 39, 261–343 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Leis, R.: Initial-Boundary Value Problems in Mathematical Physics. B.G. Teubner, Stuttgart (1986)

    Book  MATH  Google Scholar 

  47. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lighthill, J.: On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. A. 211, 564–587 (1952)

  49. Lighthill, J.: On sound generated aerodynamically II. General theory. Proc. R. Soc. Lond. A. 222, 1–32 (1954)

  50. Lighthill, J.: Waves in Fluids. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  51. Lions, P.-L.: Mathematical Topics in Fluid Dynamics, vol. 1. Incompressible Models. Oxford Science Publication, Oxford (1996)

  52. Lions, P.-L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 (1998)

    MathSciNet  MATH  Google Scholar 

  53. Liu, J.-G., Liu, J., Pego, R.L.: On incompressible Navier-Stokes dynamics: a new approach for analysis and computation. In: Hyperbolic Problems: Theory, Numerics and Applications, vol. I, pp. 29–44. Yokohama Publ., Yokohama (2006)

  54. Liu, J.-G., Liu, J., Pego, R.L.: Stability and convergence of efficient Navier-Stokes solvers via a commutator estimate. Commun. Pure Appl. Math. 60(10), 1443–1487 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Masmoudi, N.: The Euler limit of the Navier-Stokes equations, and rotating fluids with boundary. Arch. Rational Mech. Anal. 142(4), 375–394 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  56. Masmoudi, N.: Asymptotic problems and compressible and incompressible limits. In: Málek, J., Nečas, J., Rokyta, M. (eds.) Advances in Mathematical Fluid Mechanics, pp. 119–158. Springer, Berlin (2000)

  57. Masmoudi, N.: Ekman layers of rotating fluids: the case of general initial data. Commun. Pure Appl. Math. 53(4), 432–483 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  58. Masmoudi, N.: Incompressible inviscid limit of the compressible Navier-Stokes system. Ann. Inst. H. Poincaré, Anal. non linéaire 18, 199–224 (2001)

    Google Scholar 

  59. Masmoudi, N.: Examples of singular limits in hydrodynamics. In: Dafermos, C., Feireisl, E. (eds.) Handbook of Differential Equations, III. Elsevier, Amsterdam (2006)

    Google Scholar 

  60. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  61. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible and heat conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  62. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer Tracts in Natural Philosophy, vol. 37, Springer, Heidelberg (1998)

  63. Priezjev, N.V., Darhuber A.A., Troian, S.M.: Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations. Phys. Rev. E 71, 041608 (2005)

    Google Scholar 

  64. Priezjev, N.V., Troian, S.M.: Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular versus continuum predictions. J. Fluid Mech. 554, 25–46 (2006)

    Article  MATH  Google Scholar 

  65. Prodi, G.: Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  66. Reed, M., Simon, B.: Methods of modern mathematical physics, vol. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1978)

  67. Scheffer, V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3(4), 343–401 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  68. Schochet, S.: The mathematical theory of low Mach number flows. M2ANMath. Model Numer. Anal. 39, 441–458 (2005)

  69. Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  70. Shnirelman, A.: Weak solutions of incompressible Euler equations. In: Handbook of Mathematical Fluid Dynamics, vol. II, pp. 87–116. North-Holland, Amsterdam (2003)

  71. Shvydkoy, R.: Lectures on the Onsager conjecture. Discret. Contin. Dyn. Syst. Ser. S. 3(3), 473–496 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  72. Sohr, H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser Verlag, Basel (2001)

    Book  MATH  Google Scholar 

  73. Valli, A.: A correction to the paper: An existence theorem for compressible viscous fluids (Ann. Mat. Pura Appl. 130(4), 197–213 (1982); MR 83h:35112). Ann. Mat. Pura Appl. 132 (4), 399–400 (1983)(1982)

  74. Valli, A.: An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. 130(4), 197–213 (1982)

    Google Scholar 

  75. Valli, A., Zajaczkowski, M.: Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103, 259–296 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  76. Wiedemann, E.: Existence of weak solutions for the incompressible Euler equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(5), 727–730 (2011)

    Google Scholar 

  77. Xin, Z.: Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Commun. Pure Appl. Math. 51, 229–240 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Eduard Feireisl acknowledges the support of the project LL1202 in the programme ERC-CZ funded by the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Feireisl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feireisl, E. Mathematical analysis of fluids in motion: from well-posedness to model reduction. Rev Mat Complut 26, 299–340 (2013). https://doi.org/10.1007/s13163-013-0126-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-013-0126-2

Keywords

Mathematics Subject Classification

Navigation